skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Effects of Nonlinearity and Network Architecture on the Performance of Supervised Neural Networks
The nonlinearity of activation functions used in deep learning models is crucial for the success of predictive models. Several simple nonlinear functions, including Rectified Linear Unit (ReLU) and Leaky-ReLU (L-ReLU) are commonly used in neural networks to impose the nonlinearity. In practice, these functions remarkably enhance the model accuracy. However, there is limited insight into the effects of nonlinearity in neural networks on their performance. Here, we investigate the performance of neural network models as a function of nonlinearity using ReLU and L-ReLU activation functions in the context of different model architectures and data domains. We use entropy as a measurement of the randomness, to quantify the effects of nonlinearity in different architecture shapes on the performance of neural networks. We show that the ReLU nonliearity is a better choice for activation function mostly when the network has sufficient number of parameters. However, we found that the image classification models with transfer learning seem to perform well with L-ReLU in fully connected layers. We show that the entropy of hidden layer outputs in neural networks can fairly represent the fluctuations in information loss as a function of nonlinearity. Furthermore, we investigate the entropy profile of shallow neural networks as a way of representing their hidden layer dynamics.  more » « less
Award ID(s):
1831980 1831977 1800406
NSF-PAR ID:
10291464
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Algorithms
Volume:
14
Issue:
2
ISSN:
1999-4893
Page Range / eLocation ID:
51
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A wide variety of activation functions have been proposed for neural networks. The Rectified Linear Unit (ReLU) is especially popular today. There are many practical reasons that motivate the use of the ReLU. This paper provides new theoretical characterizations that support the use of the ReLU, its variants such as the leaky ReLU, as well as other activation functions in the case of univariate, single-hidden layer feedforward neural networks. Our results also explain the importance of commonly used strategies in the design and training of neural networks such as “weight decay” and “path-norm” regularization, and provide a new justification for the use of “skip connections” in network architectures. These new insights are obtained through the lens of spline theory. In particular, we show how neural network training problems are related to infinite-dimensional optimizations posed over Banach spaces of functions whose solutions are well-known to be fractional and polynomial splines, where the particular Banach space (which controls the order of the spline) depends on the choice of activation function. 
    more » « less
  2. Motivated by the growing theoretical understanding of neural networks that employ the Rectified Linear Unit (ReLU) as their activation function, we revisit the use of ReLU activation functions for learning implicit neural representations (INRs). Inspired by second order B-spline wavelets, we incorporate a set of simple constraints to the ReLU neurons in each layer of a deep neural network (DNN) to remedy the spectral bias. This in turn enables its use for various INR tasks. Empirically, we demonstrate that, contrary to popular belief, one can learn state-of-the-art INRs based on a DNN composed of only ReLU neurons. Next, by leveraging recent theoretical works which characterize the kinds of functions ReLU neural networks learn, we provide a way to quantify the regularity of the learned function. This offers a principled approach to selecting the hyperparameters in INR architectures. We substantiate our claims through experiments in signal representation, super resolution, and computed tomography, demonstrating the versatility and effectiveness of our method. The code for all experiments can be found at https://github.com/joeshenouda/relu-inrs. 
    more » « less
  3. We explore convergence of deep neural networks with the popular ReLU activation function, as the depth of the networks tends to infinity. To this end, we introduce the notion of activation domains and activation matrices of a ReLU network. By replacing applications of the ReLU activation function by multiplications with activation matrices on activation domains, we obtain an explicit expression of the ReLU network. We then identify the convergence of the ReLU networks as convergence of a class of infinite products of matrices. Sufficient and necessary conditions for convergence of these infinite products of matrices are studied. As a result, we establish necessary conditions for ReLU networks to converge that the sequence of weight matrices converges to the identity matrix and the sequence of the bias vectors converges to zero as the depth of ReLU networks increases to infinity. Moreover, we obtain sufficient conditions in terms of the weight matrices and bias vectors at hidden layers for pointwise convergence of deep ReLU networks. These results provide mathematical insights to convergence of deep neural networks. Experiments are conducted to mathematically verify the results and to illustrate their potential usefulness in initialization of deep neural networks. 
    more » « less
  4. In this paper we prove that Local (S)GD (or FedAvg) can optimize deep neural networks with Rectified Linear Unit (ReLU) activation function in polynomial time. Despite the established convergence theory of Local SGD on optimizing general smooth functions in communication-efficient distributed optimization, its convergence on non-smooth ReLU networks still eludes full theoretical understanding. The key property used in many Local SGD analysis on smooth function is gradient Lipschitzness, so that the gradient on local models will not drift far away from that on averaged model. However, this decent property does not hold in networks with non-smooth ReLU activation function. We show that, even though ReLU network does not admit gradient Lipschitzness property, the difference between gradients on local models and average model will not change too much, under the dynamics of Local SGD. We validate our theoretical results via extensive experiments. This work is the first to show the convergence of Local SGD on non-smooth functions, and will shed lights on the optimization theory of federated training of deep neural networks. 
    more » « less
  5. We give a polynomial-time algorithm for learning neural networks with one layer of sigmoids feeding into any Lipschitz, monotone activation function (e.g., sigmoid or ReLU). We make no assumptions on the structure of the network, and the algorithm succeeds with respect to {\em any} distribution on the unit ball in n dimensions (hidden weight vectors also have unit norm). This is the first assumption-free, provably efficient algorithm for learning neural networks with two nonlinear layers. Our algorithm-- Alphatron-- is a simple, iterative update rule that combines isotonic regression with kernel methods. It outputs a hypothesis that yields efficient oracle access to interpretable features. It also suggests a new approach to Boolean learning problems via real-valued conditional-mean functions, sidestepping traditional hardness results from computational learning theory. Along these lines, we subsume and improve many longstanding results for PAC learning Boolean functions to the more general, real-valued setting of {\em probabilistic concepts}, a model that (unlike PAC learning) requires non-i.i.d. noise-tolerance. 
    more » « less