skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metaform optics: Bridging nanophotonics and freeform optics
The demand for high-resolution optical systems with a compact form factor, such as augmented reality displays, sensors, and mobile cameras, requires creating new optical component architectures. Advances in the design and fabrication of freeform optics and metasurfaces make them potential solutions to address the previous needs. Here, we introduce the concept of a metaform—an optical surface that integrates the combined benefits of a freeform optic and a metasurface into a single optical component. We experimentally realized a miniature imager using a metaform mirror. The mirror is fabricated via an enhanced electron beam lithography process on a freeform substrate. The design degrees of freedom enabled by a metaform will support a new generation of optical systems.  more » « less
Award ID(s):
1922591
PAR ID:
10291521
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
7
Issue:
18
ISSN:
2375-2548
Page Range / eLocation ID:
eabe5112
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Freeform optical components enable dramatic advances for optical systems in both performance and packaging. Surface form metrology of manufactured freeform optics remains a challenge and an active area of research. Towards addressing this challenge, we previously reported on a novel architecture, cascade optical coherence tomography (C-OCT), which was validated for its ability of high-precision sag measurement at a given point. Here, we demonstrate freeform surface measurements, enabled by the development of a custom optical-relay-based scanning mechanism and a unique high-speed rotation mechanism. Experimental results on a flat mirror demonstrate an RMS flatness of 14 nm (∼λ/44 at the He-Ne wavelength). Measurement on a freeform mirror is achieved with an RMS residual of 69 nm (∼λ/9). The system-level investigations and validation provide the groundwork for advancing C-OCT as a viable freeform metrology technique. 
    more » « less
  2. When conducting interferometric tests of freeform optical surfaces, additional optical components, such as computer-generated holograms or deformable mirrors, are often necessary to achieve a null or quasi-null. These additional optical components increase both the cost and the difficulty of interferometric tests of freeform optical surfaces. In this paper, designs using off-axis segments of conics as base surfaces for freeforms are explored. These off-axis conics are more complex base surfaces than typically-used base spheres but remain null-testable. By leveraging off-axis conics in conjunction with additional orthogonal polynomial departures, designs were found with up to an order-of-magnitude of improvement in testability estimates relative to designs that use base spheres. Two design studies, a three-mirror telescope and a wide field-of-view four-mirror telescope, demonstrate the impact of using off-axis conics as the base surface. 
    more » « less
  3. Winston, Roland; Yablonovitch, Eli (Ed.)
    Abstract Dynamic illumination can improve functionality for multiple application areas, including lighting, AR/VR, automotive, medicine, and security. Some applications require a uniform illumination pattern of continuously variable divergence or size for improved functionality. Such dynamic functionality has previously been achieved, for example, by longitudinally moving a source relative to a curved reflector, which can result poor uniformity, or through zoom configurations in which the longitudinal distances between lenses in the system are dynamically adjusted. Advances in high precision manufacturing methods such as diamond machining have facilitated the practical implementation of freeform optical components, enabling new design approaches and concepts for illumination systems. In this paper, we explore the use of arrays of transmissive pairs of freeform surfaces to enable efficient and uniform dynamic illumination in a compact package. This work builds on the Alvarez lens concept, in which a pair of transmissive XY-polynomial freeform surfaces generates variable optical power through lateral relative shifts. Design approaches and simulation results are presented. 
    more » « less
  4. Hahlweg, Cornelius F.; Mulley, Joseph R. (Ed.)
    Increasing depth of field in imaging systems can be beneficial, particularly for systems with high numerical apertures and short depth of field, such as microscopy. Extending depth of field has been previously demonstrated, for example, using non-rotationally symmetric (freeform) components such as cubic and logarithmic phase plates. Such fixed phase plates are generally designed for a specific optical system, so a different phase plate is required for each system. Methods that enable variable extended depth of field for multiple optical systems could provide benefits by reducing the number of required components and costs. In this paper, we explore the design of a single pair of transmissive freeform surfaces to enable extended depth of field for multiple lenses with different numerical apertures through relative translation of the freeform components. This work builds on the concept of an Alvarez lens, in which one pair of transmissive XY-polynomial freeform surfaces generates variable optical power through lateral relative shifts between the surfaces. The presented approach is based on the design of multiple fixed phase plates to optimize the through-focus Modulation Transfer Function (MTF) for imaging lenses of given numerical apertures. The freeform surface equation for the desired variable phase plate pair is then derived and the relative shift amounts between the freeform surfaces are calculated to enable extended depth of field for multiple imaging lenses with different numerical aperture values. Design approaches and simulation results will be discussed. © (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. Citation Download Citation Sara Moein and Thomas J. Suleski "Variable extended depth of field imaging using freeform optics", Proc. SPIE 11483, Novel Optical Systems, Methods, and Applications XXIII, 114830G (21 August 2020); https://doi.org/10.1117/12.2568723 
    more » « less
  5. In the last 10 years, freeform optics has enabled compact and high-performance imaging systems. This article begins with a brief history of freeform optics, focusing on imaging systems, including marketplace emergence. The development of this technology is motivated by the clear opportunity to enable science across a wide range of applications, spanning from extreme ultraviolet lithography to space optics. Next, we define freeform optics and discuss concurrent engineering that brings together design, fabrication, testing, and assembly into one process. We then lay out the foundations of the aberration theory for freeform optics and emerging design methodologies. We describe fabrication methods, emphasizing deterministic computer numerical control grinding, polishing, and diamond machining. Next, we consider mid-spatial frequency errors that inherently result from freeform fabrication techniques. We realize that metrologies of freeform optics are simultaneously sparse in their existence but diverse in their potential. Thus, we focus on metrology techniques demonstrated for the measurement of freeform optics. We conclude this review with an outlook on the future of freeform optics. 
    more » « less