skip to main content

Search for: All records

Award ID contains: 1922591

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The demand for high-resolution optical systems with a compact form factor, such as augmented reality displays, sensors, and mobile cameras, requires creating new optical component architectures. Advances in the design and fabrication of freeform optics and metasurfaces make them potential solutions to address the previous needs. Here, we introduce the concept of a metaform—an optical surface that integrates the combined benefits of a freeform optic and a metasurface into a single optical component. We experimentally realized a miniature imager using a metaform mirror. The mirror is fabricated via an enhanced electron beam lithography process on a freeform substrate. The design degrees of freedom enabled by a metaform will support a new generation of optical systems.
  2. In the last 10 years, freeform optics has enabled compact and high-performance imaging systems. This article begins with a brief history of freeform optics, focusing on imaging systems, including marketplace emergence. The development of this technology is motivated by the clear opportunity to enable science across a wide range of applications, spanning from extreme ultraviolet lithography to space optics. Next, we define freeform optics and discuss concurrent engineering that brings together design, fabrication, testing, and assembly into one process. We then lay out the foundations of the aberration theory for freeform optics and emerging design methodologies. We describe fabrication methods, emphasizing deterministic computer numerical control grinding, polishing, and diamond machining. Next, we consider mid-spatial frequency errors that inherently result from freeform fabrication techniques. We realize that metrologies of freeform optics are simultaneously sparse in their existence but diverse in their potential. Thus, we focus on metrology techniques demonstrated for the measurement of freeform optics. We conclude this review with an outlook on the future of freeform optics.