Reimaging telescopes have an accessible exit pupil that facilitates stray light mitigation and matching to auxiliary optical systems. Freeform surfaces present the opportunity for unobscured reflective systems to be folded into geometries that are otherwise impracticable with conventional surface types. It is critical, however, to understand the limitations of the enabled folding geometries and choose the one that best balances the optical performance and mechanical requirements. Here, we used the aberration theory of freeform surfaces to determine the aberration correction potential for using freeform surfaces in reimaging three-mirror telescopes and established a hierarchy for the different folding geometries without using optimization. We found that when using freeform optics, the ideal folding geometry had 9× better wavefront performance compared to the next best geometry. Within that ideal geometry, the system using freeform optics had 39% better wavefront performance compared to a system using off-axis asphere surfaces, thus quantifying one of the advantages of freeform optics in this design space.
more »
« less
Freeform optics for imaging
In the last 10 years, freeform optics has enabled compact and high-performance imaging systems. This article begins with a brief history of freeform optics, focusing on imaging systems, including marketplace emergence. The development of this technology is motivated by the clear opportunity to enable science across a wide range of applications, spanning from extreme ultraviolet lithography to space optics. Next, we define freeform optics and discuss concurrent engineering that brings together design, fabrication, testing, and assembly into one process. We then lay out the foundations of the aberration theory for freeform optics and emerging design methodologies. We describe fabrication methods, emphasizing deterministic computer numerical control grinding, polishing, and diamond machining. Next, we consider mid-spatial frequency errors that inherently result from freeform fabrication techniques. We realize that metrologies of freeform optics are simultaneously sparse in their existence but diverse in their potential. Thus, we focus on metrology techniques demonstrated for the measurement of freeform optics. We conclude this review with an outlook on the future of freeform optics.
more »
« less
- PAR ID:
- 10211666
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optica
- Volume:
- 8
- Issue:
- 2
- ISSN:
- 2334-2536
- Format(s):
- Medium: X Size: Article No. 161
- Size(s):
- Article No. 161
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Conventional refractive microscope objective lenses have limited applicability to a range of imaging modalities due to the dispersive nature of their optical elements. Designing a conventional refractive microscope objective that provides well-corrected imaging over a broad spectral range can be challenging, if not impossible. In contrast, reflective optics are inherently achromatic, so a system composed entirely of reflective elements is free from chromatic aberrations and, as a result, can image over an ultra-wide spectral range with perfect color correction. This study explores the design space of unobscured high numerical aperture, all-reflective microscope objectives. In particular, using freeform optical elements we obviate the need for a center obscuration, rendering the objective’s modulation transfer function comparable to that of refractive lens systems of similar numerical aperture. We detail the design process of the reflective objective, from determining the design specifications to the system optimization and sensitivity analysis. The outcome is an all-reflective freeform microscope objective lens with a 0.65 numerical aperture that provides diffraction-limited imaging and is compatible with the geometric constraints of commercial microscope systems.more » « less
-
Freeform optics can reduce the cost, weight, and size of advanced imaging systems, but it is challenging to manufacture the complex rotationally asymmetric surfaces to optical tolerances. To address the need for disruptive, high-precision sub-aperture forming and finishing techniques for freeform optics, we investigate an alternative, non-contact polishing methodology using femtosecond lasers, combining modeling, experiments, and demonstrations. Femtosecondlaser- based polishing of germanium was investigated using an experimentally-validated twotemperature model of laser/germanium interaction to guide the understanding and selection of laser parameters to achieve near-nonthermal ablation for polishing and figuring. For the first time to our knowledge, model-guided femtosecond laser polishing of germanium was successfully demonstrated, achieving precision material removal while maintaining single-digit nanometer optical surface quality. The demonstrated femtosecond-laser-based polishing technique lays the foundation for semiconductor optics polishing/fabrication using femtosecond lasers and opens a viable path for high-precision, complex sub-aperture optical polishing tasks on various materials. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreementmore » « less
-
null (Ed.)The demand for high-resolution optical systems with a compact form factor, such as augmented reality displays, sensors, and mobile cameras, requires creating new optical component architectures. Advances in the design and fabrication of freeform optics and metasurfaces make them potential solutions to address the previous needs. Here, we introduce the concept of a metaform—an optical surface that integrates the combined benefits of a freeform optic and a metasurface into a single optical component. We experimentally realized a miniature imager using a metaform mirror. The mirror is fabricated via an enhanced electron beam lithography process on a freeform substrate. The design degrees of freedom enabled by a metaform will support a new generation of optical systems.more » « less
-
Abstract 3D printing of optics has gained significant attention in optical industry, but most of the research has been focused on organic polymers. In spite of recent progress in 3D printing glass, 3D printing of precision glass optics for imaging applications still faces challenges from shrinkage during printing and thermal processing, and from inadequate surface shape and quality to meet the requirements for imaging applications. This paper reports a new liquid silica resin (LSR) with higher curing speed, better mechanical properties, lower sintering temperature, and reduced shrinkage, as well as the printing process for high‐precision glass optics for imaging applications. It is demonstrated that the proposed material and printing process can print almost all types of optical surfaces, including flat, spherical, aspherical, freeform, and discontinuous surfaces, with accurate surface shape and high surface quality for imaging applications. It is also demonstrated that the proposed method can print complex optical systems with multiple optical elements, completely removing the time‐consuming and error‐prone alignment process. Most importantly, the proposed printing method is able to print optical systems with active moving elements, significantly improving system flexibility and functionality. The printing method will enable the much‐needed transformational manufacturing of complex freeform glass optics that are currently inaccessible with conventional processes.more » « less
An official website of the United States government
