skip to main content


Title: Freeform optics for imaging

In the last 10 years, freeform optics has enabled compact and high-performance imaging systems. This article begins with a brief history of freeform optics, focusing on imaging systems, including marketplace emergence. The development of this technology is motivated by the clear opportunity to enable science across a wide range of applications, spanning from extreme ultraviolet lithography to space optics. Next, we define freeform optics and discuss concurrent engineering that brings together design, fabrication, testing, and assembly into one process. We then lay out the foundations of the aberration theory for freeform optics and emerging design methodologies. We describe fabrication methods, emphasizing deterministic computer numerical control grinding, polishing, and diamond machining. Next, we consider mid-spatial frequency errors that inherently result from freeform fabrication techniques. We realize that metrologies of freeform optics are simultaneously sparse in their existence but diverse in their potential. Thus, we focus on metrology techniques demonstrated for the measurement of freeform optics. We conclude this review with an outlook on the future of freeform optics.

 
more » « less
Award ID(s):
1922591 1822049 1822026
NSF-PAR ID:
10211666
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optica
Volume:
8
Issue:
2
ISSN:
2334-2536
Format(s):
Medium: X Size: Article No. 161
Size(s):
["Article No. 161"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Freeform optics can reduce the cost, weight, and size of advanced imaging systems, but it is challenging to manufacture the complex rotationally asymmetric surfaces to optical tolerances. To address the need for disruptive, high-precision sub-aperture forming and finishing techniques for freeform optics, we investigate an alternative, non-contact polishing methodology using femtosecond lasers, combining modeling, experiments, and demonstrations. Femtosecondlaser- based polishing of germanium was investigated using an experimentally-validated twotemperature model of laser/germanium interaction to guide the understanding and selection of laser parameters to achieve near-nonthermal ablation for polishing and figuring. For the first time to our knowledge, model-guided femtosecond laser polishing of germanium was successfully demonstrated, achieving precision material removal while maintaining single-digit nanometer optical surface quality. The demonstrated femtosecond-laser-based polishing technique lays the foundation for semiconductor optics polishing/fabrication using femtosecond lasers and opens a viable path for high-precision, complex sub-aperture optical polishing tasks on various materials. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
    more » « less
  2. Abstract

    Miniature lenses with a tunable focus are essential components for many modern applications involving compact optical systems. While several tunable lenses have been reported with various tuning mechanisms, they often face challenges with respect to power consumption, tuning speed, fabrication cost, or production scalability. In this work, we have adapted the mechanism of an Alvarez lens – a varifocal composite lens in which lateral shifts of two optical elements with cubic phase surfaces give rise to a change in the optical power – to construct a miniature, microelectromechanical system (MEMS)-actuated metasurface Alvarez lens. Implementation based on an electrostatic MEMS generates fast and controllable actuation with low power consumption. The utilization of metasurfaces – ultrathin and subwavelength-patterned diffractive optics – as optical elements greatly reduces the device volume compared to systems using conventional freeform lenses. The entire MEMS Alvarez metalens is fully compatible with modern semiconductor fabrication technologies, granting it the potential to be mass-produced at a low unit cost. In the reported prototype operating at 1550 nm wavelength, a total uniaxial displacement of 6.3 µm was achieved in the Alvarez metalens with a direct-current (DC) voltage application up to 20 V, which modulated the focal position within a total tuning range of 68 µm, producing more than an order of magnitude change in the focal length and a 1460-diopter change in the optical power. The MEMS Alvarez metalens has a robust design that can potentially generate a much larger tuning range without substantially increasing the device volume or energy consumption, making it desirable for a wide range of imaging and display applications.

     
    more » « less
  3. Hahlweg, Cornelius F. ; Mulley, Joseph R. (Ed.)
    Increasing depth of field in imaging systems can be beneficial, particularly for systems with high numerical apertures and short depth of field, such as microscopy. Extending depth of field has been previously demonstrated, for example, using non-rotationally symmetric (freeform) components such as cubic and logarithmic phase plates. Such fixed phase plates are generally designed for a specific optical system, so a different phase plate is required for each system. Methods that enable variable extended depth of field for multiple optical systems could provide benefits by reducing the number of required components and costs. In this paper, we explore the design of a single pair of transmissive freeform surfaces to enable extended depth of field for multiple lenses with different numerical apertures through relative translation of the freeform components. This work builds on the concept of an Alvarez lens, in which one pair of transmissive XY-polynomial freeform surfaces generates variable optical power through lateral relative shifts between the surfaces. The presented approach is based on the design of multiple fixed phase plates to optimize the through-focus Modulation Transfer Function (MTF) for imaging lenses of given numerical apertures. The freeform surface equation for the desired variable phase plate pair is then derived and the relative shift amounts between the freeform surfaces are calculated to enable extended depth of field for multiple imaging lenses with different numerical aperture values. Design approaches and simulation results will be discussed. © (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. Citation Download Citation Sara Moein and Thomas J. Suleski "Variable extended depth of field imaging using freeform optics", Proc. SPIE 11483, Novel Optical Systems, Methods, and Applications XXIII, 114830G (21 August 2020); https://doi.org/10.1117/12.2568723 
    more » « less
  4. null (Ed.)
    The demand for high-resolution optical systems with a compact form factor, such as augmented reality displays, sensors, and mobile cameras, requires creating new optical component architectures. Advances in the design and fabrication of freeform optics and metasurfaces make them potential solutions to address the previous needs. Here, we introduce the concept of a metaform—an optical surface that integrates the combined benefits of a freeform optic and a metasurface into a single optical component. We experimentally realized a miniature imager using a metaform mirror. The mirror is fabricated via an enhanced electron beam lithography process on a freeform substrate. The design degrees of freedom enabled by a metaform will support a new generation of optical systems. 
    more » « less
  5. Abstract

    3D printing of optics has gained significant attention in optical industry, but most of the research has been focused on organic polymers. In spite of recent progress in 3D printing glass, 3D printing of precision glass optics for imaging applications still faces challenges from shrinkage during printing and thermal processing, and from inadequate surface shape and quality to meet the requirements for imaging applications. This paper reports a new liquid silica resin (LSR) with higher curing speed, better mechanical properties, lower sintering temperature, and reduced shrinkage, as well as the printing process for high‐precision glass optics for imaging applications. It is demonstrated that the proposed material and printing process can print almost all types of optical surfaces, including flat, spherical, aspherical, freeform, and discontinuous surfaces, with accurate surface shape and high surface quality for imaging applications. It is also demonstrated that the proposed method can print complex optical systems with multiple optical elements, completely removing the time‐consuming and error‐prone alignment process. Most importantly, the proposed printing method is able to print optical systems with active moving elements, significantly improving system flexibility and functionality. The printing method will enable the much‐needed transformational manufacturing of complex freeform glass optics that are currently inaccessible with conventional processes.

     
    more » « less