skip to main content


Title: Extremum Seeking Feedback With Wave Partial Differential Equation Compensation
Abstract This paper addresses the compensation of wave actuator dynamics in scalar extremum seeking (ES) for static maps. Infinite-dimensional systems described by partial differential equations (PDEs) of wave type have not been considered so far in the literature of ES. A distributed-parameter-based control law using back-stepping approach and Neumann actuation is initially proposed. Local exponential stability as well as practical convergence to an arbitrarily small neighborhood of the unknown extremum point is guaranteed by employing Lyapunov–Krasovskii functionals and averaging theory in infinite dimensions. Thereafter, the extension for wave equations with Dirichlet actuation, antistable wave PDEs as well as the design for the delay-wave PDE cascade are also discussed. Numerical simulations illustrate the theoretical results.  more » « less
Award ID(s):
1935329
NSF-PAR ID:
10291535
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Dynamic Systems, Measurement, and Control
Volume:
143
Issue:
4
ISSN:
0022-0434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    For population systems modeled by age‐structured hyperbolic partial differential equations (PDEs), we redesign the existing feedback laws, designed under the assumption that the dilution input is directly actuated, to the more realistic case where dilution is governed by actuation dynamics (modeled simply by an integrator). In addition to the standard constraint that the population density must remain positive, the dilution dynamics introduce constraints of not only positivity of dilution, but possibly of given positive lower and upper bounds on dilution. We present several designs, of varying complexity, and with various measurement requirements, which not only ensure global asymptotic (and local exponential) stabilization of a desired positive population density profile from all positive initial conditions, but do so without violating the constraints on the dilution state. To develop the results, we exploit the relation between first‐order hyperbolic PDEs and an equivalent representation in which a scalar input‐driven mode is decoupled from input‐free infinite‐dimensional internal dynamics represented by an integral delay system.

     
    more » « less
  2. Abstract

    This paper examines a class of involution-constrained PDEs where some part of the PDE system evolves a vector field whose curl remains zero or grows in proportion to specified source terms. Such PDEs are referred to as curl-free or curl-preserving, respectively. They arise very frequently in equations for hyperelasticity and compressible multiphase flow, in certain formulations of general relativity and in the numerical solution of Schrödinger’s equation. Experience has shown that if nothing special is done to account for the curl-preserving vector field, it can blow up in a finite amount of simulation time. In this paper, we catalogue a class of DG-like schemes for such PDEs. To retain the globally curl-free or curl-preserving constraints, the components of the vector field, as well as their higher moments, must be collocated at the edges of the mesh. They are updated using potentials collocated at the vertices of the mesh. The resulting schemes: (i) do not blow up even after very long integration times, (ii) do not need any special cleaning treatment, (iii) can operate with large explicit timesteps, (iv) do not require the solution of an elliptic system and (v) can be extended to higher orders using DG-like methods. The methods rely on a special curl-preserving reconstruction and they also rely on multidimensional upwinding. The Galerkin projection, highly crucial to the design of a DG method, is now conducted at the edges of the mesh and yields a weak form update that uses potentials obtained at the vertices of the mesh with the help of a multidimensional Riemann solver. A von Neumann stability analysis of the curl-preserving methods is conducted and the limiting CFL numbers of this entire family of methods are catalogued in this work. The stability analysis confirms that with the increasing order of accuracy, our novel curl-free methods have superlative phase accuracy while substantially reducing dissipation. We also show that PNPM-like methods, which only evolve the lower moments while reconstructing the higher moments, retain much of the excellent wave propagation characteristics of the DG-like methods while offering a much larger CFL number and lower computational complexity. The quadratic energy preservation of these methods is also shown to be excellent, especially at higher orders. The methods are also shown to be curl-preserving over long integration times.

     
    more » « less
  3. Modern control theory provides us with a spectrum of methods for studying the interconnection of dynamic systems using input-output properties of the interconnected subsystems. Perhaps the most advanced framework for such inputoutput analysis is the use of Integral Quadratic Constraints (IQCs), which considers the interconnection of a nominal linear system with an unmodelled nonlinear or uncertain subsystem with known input-output properties. Although these methods are widely used for Ordinary Differential Equations (ODEs), there have been fewer attempts to extend IQCs to infinitedimensional systems. In this paper, we present an IQC-based framework for Partial Differential Equations (PDEs) and Delay Differential Equations (DDEs). First, we introduce infinitedimensional signal spaces, operators, and feedback interconnections. Next, in the main result, we propose a formulation of hard IQC-based input-output stability conditions, allowing for infinite-dimensional multipliers. We then show how to test hard IQC conditions with infinite-dimensional multipliers on a nominal linear PDE or DDE system via the Partial Integral Equation (PIE) state-space representation using a sufficient version of the Kalman-Yakubovich-Popov lemma (KYP). The results are then illustrated using four example problems with uncertainty and nonlinearity. 
    more » « less
  4. This paper presents an adaptive functional estimation scheme for the fault detection and diagnosis of nonlinear faults in positive real infinite dimensional systems. The system is assumed to satisfy a positive realness condition and the fault, taking the form of a nonlinear function of the output, is assumed to enter the system at an unknown time. The proposed detection and diagnostic observer utilizes a Reproducing Kernel Hilbert Space as the parameter space and via a Lyapunov redesign approach, the learning scheme for the unknown functional is used for the detection of the fault occurrence, the diagnosis of the fault and finally its accommodation via an adaptive control reconfiguration. Results on parabolic PDEs with either boundary or in-domain actuation and sensing are included. 
    more » « less
  5. Three wave resonant triad interactions in two space and one time dimensions form a well-known system of first-order quadratically nonlinear evolution equations that arise in many areas of physics. In deep water waves, they were first derived by Simmons in 1969 and later shown to be exactly solvable by Ablowitz & Haberman in 1975. Specifically, integrability was established by introducing a system of six wave interactions whose symmetry reduction leads to the well-known three wave equations. Here, it is shown that the six wave interaction and classical three wave equations satisfying triad resonance conditions in finite-depth gravity waves can be derived from the non-local integro-differential formulation of the free surface gravity wave equation with surface tension. These quadratically nonlinear six wave interaction equations and their reductions to the classical and non-local complex as well as real reverse space–time three wave interaction equations are integrable. Limits to infinite and shallow water depth are also discussed. 
    more » « less