skip to main content


Title: Six wave interaction equations in finite-depth gravity waves with surface tension
Three wave resonant triad interactions in two space and one time dimensions form a well-known system of first-order quadratically nonlinear evolution equations that arise in many areas of physics. In deep water waves, they were first derived by Simmons in 1969 and later shown to be exactly solvable by Ablowitz & Haberman in 1975. Specifically, integrability was established by introducing a system of six wave interactions whose symmetry reduction leads to the well-known three wave equations. Here, it is shown that the six wave interaction and classical three wave equations satisfying triad resonance conditions in finite-depth gravity waves can be derived from the non-local integro-differential formulation of the free surface gravity wave equation with surface tension. These quadratically nonlinear six wave interaction equations and their reductions to the classical and non-local complex as well as real reverse space–time three wave interaction equations are integrable. Limits to infinite and shallow water depth are also discussed.  more » « less
Award ID(s):
2005343
NSF-PAR ID:
10434353
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
961
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The dynamics of initially truncated and bent line solitons for the Kadomtsev–Petviashvili (KPII) equation modelling internal and surface gravity waves is analysed using modulation theory. In contrast to previous studies on obliquely interacting solitons that develop from acute incidence angles, this work focuses on initial value problems for the obtuse incidence of two or three partial line solitons, which propagate away from one another. Despite counterpropagation, significant residual soliton interactions are observed with novel physical consequences. The initial value problem for a truncated line soliton – describing the emergence of a quasi-one-dimensional soliton from a wide channel – is shown to be related to the interaction of oblique solitons. Analytical descriptions for the development of weak and strong interactions are obtained in terms of interacting simple wave solutions of modulation equations for the local soliton amplitude and slope. In the weak interaction case, the long-time evolution of truncated and large obtuse angle solitons exhibits a decaying, parabolic wave profile with temporally increasing focal length that asymptotes to a cylindrical Korteweg–de Vries soliton. In contrast, the strong interaction case of slightly obtuse interacting solitons evolves into a steady, one-dimensional line soliton with amplitude reduced by an amount proportional to the incidence slope. This strong interaction is identified with the ‘Mach expansion’ of a soliton with an expansive corner, contrasting with the well-known Mach reflection of a soliton with a compressive corner. Interestingly, the critical angles for Mach expansion and reflection are the same. Numerical simulations of the KPII equation quantitatively support the analytical findings. 
    more » « less
  2. We consider high-order strongly nonlinear long wave models expanded in a single small parameter measuring the ratio of the water depth to the characteristic wavelength. By examining its dispersion relation, the high-order system for the bottom velocity is found stable to all disturbances at any order of approximation. On the other hand, systems for other velocities can be unstable and even ill-posed, as signified by the unbounded maximum growth. Under the steady assumption, a new third-order solitary wave solution of the Euler equations is obtained using the high-order strongly nonlinear system and is expanded in an amplitude parameter, which is different from that used in weakly nonlinear theory. The third-order solution is shown to well describe various physical quantities induced by a finite-amplitude solitary wave, including the wave profile, horizontal velocity profile, particle velocity at the crest and bottom pressure. For numerical computations, the first- and second-order strongly nonlinear systems for the bottom velocity are considered. It is shown that finite difference schemes are unstable due to truncation errors introduced in approximating high-order spatial derivatives and, therefore, a more accurate spatial discretization scheme is necessary. Using a pseudo-spectral method based on finite Fourier series combined with an iterative scheme for the inversion of a non-local operator, the strongly nonlinear systems are solved numerically for the propagation of a single solitary wave and the head-on collision of two counter-propagating solitary waves of finite amplitudes, and the results are compared with previous laboratory measurements. 
    more » « less
  3. A nonlocal nonlinear Schrödinger (NLS) equation was recently found by the authors and shown to be an integrable infinite dimensional Hamiltonian equation. Unlike the classical (local) case, here the nonlinearly induced “potential” issymmetric thus the nonlocal NLS equation is alsosymmetric. In this paper, newreverse space‐timeandreverse timenonlocal nonlinear integrable equations are introduced. They arise from remarkably simple symmetry reductions of general AKNS scattering problems where the nonlocality appears in both space and time or time alone. They are integrable infinite dimensional Hamiltonian dynamical systems. These include the reverse space‐time, and in some cases reverse time, nonlocal NLS, modified Korteweg‐deVries (mKdV), sine‐Gordon, (1 + 1) and (2 + 1) dimensional three‐wave interaction, derivative NLS, “loop soliton,” Davey–Stewartson (DS), partiallysymmetric DS and partially reverse space‐time DS equations. Linear Lax pairs, an infinite number of conservation laws, inverse scattering transforms are discussed and one soliton solutions are found. Integrable reverse space‐time and reverse time nonlocal discrete nonlinear Schrödinger type equations are also introduced along with few conserved quantities. Finally, nonlocal Painlevé type equations are derived from the reverse space‐time and reverse time nonlocal NLS equations.

     
    more » « less
  4. A strongly nonlinear long-wave approximation is adopted to obtain a high-order model for large-amplitude long internal waves in a two-layer system by assuming the water depth is much smaller than the typical wavelength. When truncated at the first order, the model can be reduced to the regularized strongly nonlinear model of Choiet al.(J. Fluid Mech., vol. 629, 2009, pp. 73–85), which lessens the Kelvin–Helmholtz instability excited by the tangential velocity jump across the interface in the inviscid Miyata–Choi–Camassa (MCC) equations. Using the second-order model, the next-order correction to the internal solitary wave solution of the MCC equations is found and its validity is examined with the Euler solution in terms of the wave profile, the effective wavelength and the velocity profile. It is shown that the correction greatly improves the comparison with the Euler solution for the whole range of wave amplitudes and no further correction is necessary for practical applications. Based on a local stability analysis, the region of stability for the second-order long-wave model is identified in the physical parameter space so that the efficient numerical scheme developed for the first-order model can be used for the second-order model.

     
    more » « less
  5. We present a numerical study of spatially quasi-periodic travelling waves on the surface of an ideal fluid of infinite depth. This is a generalization of the classic Wilton ripple problem to the case when the ratio of wavenumbers satisfying the dispersion relation is irrational. We propose a conformal mapping formulation of the water wave equations that employs a quasi-periodic variant of the Hilbert transform to compute the normal velocity of the fluid from its velocity potential on the free surface. We develop a Fourier pseudo-spectral discretization of the travelling water wave equations in which one-dimensional quasi-periodic functions are represented by two-dimensional periodic functions on the torus. This leads to an overdetermined nonlinear least-squares problem that we solve using a variant of the Levenberg–Marquardt method. We investigate various properties of quasi-periodic travelling waves, including Fourier resonances, time evolution in conformal space on the torus, asymmetric wave crests, capillary wave patterns that change from one gravity wave trough to the next without repeating and the dependence of wave speed and surface tension on the amplitude parameters that describe a two-parameter family of waves. 
    more » « less