The security of manycore systems has become increasingly critical. In system-on-chips (SoCs), Hardware Trojans (HTs) manipulate the functionalities of the routing components to saturate the on-chip network, degrade performance, and result in the leakage of sensitive data. Existing HT detection techniques, including runtime monitoring and state-of-the-art learning-based methods, are unable to timely and accurately identify the implanted HTs, due to the increasingly dynamic and complex nature of on-chip communication behaviors. We propose AGAPE, a novel Generative Adversarial Network (GAN)-based anomaly detection and mitigation method against HTs for secured on-chip communication. AGAPE learns the distribution of the multivariate time series of a number of NoC attributes captured by on-chip sensors under both HT-free and HT-infected working conditions. The proposed GAN can learn the potential latent interactions among different runtime attributes concurrently, accurately distinguish abnormal attacked situations from normal SoC behaviors, and identify the type and location of the implanted HTs. Using the detection results, we apply the most suitable protection techniques to each type of detected HTs instead of simply isolating the entire HT-infected router, with the aim to mitigate security threats as well as reducing performance loss. Simulation results show that AGAPE enhances the HT detection accuracy by 19%, reduces network latency and power consumption by 39% and 30%, respectively, as compared to state-of-the-art security designs. 
                        more » 
                        « less   
                    
                            
                            Image-based Process Monitoring via Adversarial Autoencoder with Applications to Rolling Defect Detection
                        
                    
    
            Image-based process monitoring has recently attracted increasing attention due to the advancement of the sensing technologies. However, existing process monitoring methods fail to fully utilize the spatial information of images due to their complex characteristics including the high-dimensionality and complex spatial structures. Recent advancements in unsupervised deep models such as generative adversarial networks (GAN) and adversarial autoencoders (AAE) has enabled to learn the complex spatial structures automatically. Inspired by this advancement, we propose an anomaly detection framework based on the AAE for unsupervised anomaly detection for images. AAE combines the power of GAN with the variational autoencoder, which serves as a nonlinear dimension reduction technique. Based on this, we propose a monitoring statistic efficiently capturing the change of the data. The performance of the proposed AAE-based anomaly detection algorithm is validated through a simulation study and real case study for rolling defect detection. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1830363
- PAR ID:
- 10291579
- Date Published:
- Journal Name:
- 2019 IEEE 15th International Conference on Automation Science and Engineering
- Page Range / eLocation ID:
- 311 to 316
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            VehiGAN : Generative Adversarial Networks for Adversarially Robust V2X Misbehavior Detection SystemsVehicle-to-Everything (V2X) communication enables vehicles to communicate with other vehicles and roadside infrastructure, enhancing traffic management and improving road safety. However, the open and decentralized nature of V2X networks exposes them to various security threats, especially misbehaviors, necessitating a robust Misbehavior Detection System (MBDS). While Machine Learning (ML) has proved effective in different anomaly detection applications, the existing ML-based MBDSs have shown limitations in generalizing due to the dynamic nature of V2X and insufficient and imbalanced training data. Moreover, they are known to be vulnerable to adversarial ML attacks. On the other hand, Generative Adversarial Networks (GAN) possess the potential to mitigate the aforementioned issues and improve detection performance by synthesizing unseen samples of minority classes and utilizing them during their model training. Therefore, we propose the first application of GAN to design an MBDS that detects any misbehavior and ensures robustness against adversarial perturbation. In this article, we present several key contributions. First, we propose an advanced threat model for stealthy V2X misbehavior where the attacker can transmit malicious data and mask it using adversarial attacks to avoid detection by ML-based MBDS. We formulate two categories of adversarial attacks against the anomaly-based MBDS. Later, in the pursuit of a generalized and robust GAN-based MBDS, we train and evaluate a diverse set of Wasserstein GAN (WGAN) models and presentVehicularGAN(VehiGAN), an ensemble of multiple top-performing WGANs, which transcends the limitations of individual models and improves detection performance. We present a physics-guided data preprocessing technique that generates effective features for ML-based MBDS. In the evaluation, we leverage the state-of-the-art V2X attack simulation tool VASP to create a comprehensive dataset of V2X messages with diverse misbehaviors. Evaluation results show that in 20 out of 35 misbehaviors,VehiGANoutperforms the baseline and exhibits comparable detection performance in other scenarios. Particularly,VehiGANexcels in detecting advanced misbehaviors that manipulate multiple fields in V2X messages simultaneously, replicating unique maneuvers. Moreover,VehiGANprovides approximately 92% improvement in false positive rate under powerful adaptive adversarial attacks, and possesses intrinsic robustness against other adversarial attacks that target the false negative rate. Finally, we make the data and code available for reproducibility and future benchmarking, available athttps://github.com/shahriar0651/VehiGAN.more » « less
- 
            We introduce a neural network framework, utilizing adversarial learning to partition an image into two cuts, with one cut falling into a reference distribution provided by the user. This concept tackles the task of unsupervised anomaly segmentation, which has attracted increasing attention in recent years due to their broad applications in tasks with unlabelled data. This Adversarial-based Selective Cutting network (ASC-Net) bridges the two domains of cluster-based deep learning methods and adversarial-based anomaly/novelty detection algorithms. We evaluate this unsupervised learning model on BraTS brain tumor segmentation, LiTS liver lesion segmentation, and MS-SEG2015 segmentation tasks. Compared to existing methods like the AnoGAN family, our model demonstrates tremendous performance gains in unsupervised anomaly segmentation tasks. Although there is still room to further improve performance compared to supervised learning algorithms, the promising experimental results shed light on building an unsupervised learning algorithm using user-defined knowledge.more » « less
- 
            Abstract Monitoring machine health and product quality enables predictive maintenance that optimizes repairs to minimize factory downtime. Data-driven intelligent manufacturing often relies on probabilistic techniques with intractable distributions. For example, generative models of data distributions can balance fault classes with synthetic data, and sampling the posterior distribution of hidden model parameters enables prognosis of degradation trends. Normalizing flows can address these problems while avoiding the training instability or long inference times of other generative Deep Learning (DL) models like Generative Adversarial Networks (GAN), Variational Autoencoders (VAE), and diffusion networks. To evaluate normalizing flows for manufacturing, experiments are conducted to synthesize surface defect images from an imbalanced data set and estimate parameters of a tool wear degradation model from limited observations. Results show that normalizing flows are an effective, multi-purpose DL architecture for solving these problems in manufacturing. Future work should explore normalizing flows for more complex degradation models and develop a framework for likelihood-based anomaly detection. Code is available at https://github.com/uky-aism/flows-for-manufacturing.more » « less
- 
            Abstract With increasing demands for precise water resource management, there is a growing need for advanced techniques in mapping water bodies. The currently deployed satellites provide complementary data that are either of high spatial or high temporal resolutions. As a result, there is a clear trade‐off between space and time when considering a single data source. For the efficient monitoring of multiple environmental resources, various Earth science applications need data at high spatial and temporal resolutions. To address this need, many data fusion methods have been described in the literature, that rely on combining data snapshots from multiple sources. Traditional methods face limitations due to sensitivity to atmospheric disturbances and other environmental factors, resulting in noise, outliers, and missing data. This paper introduces Hydrological Generative Adversarial Network (Hydro‐GAN), a novel machine learning‐based method that utilizes modified GANs to enhance boundary accuracy when mapping low‐resolution MODIS data to high‐resolution Landsat‐8 images. We propose a new non‐saturating loss function for the Hydro‐GAN generator, which maximizes the log of discriminator probabilities to promote stable updates and aid convergence. By focusing on reducing squared differences between real and synthetic images, our approach enhances training stability and overall performance. We specifically focus on mapping water bodies using MODIS and Landsat‐8 imagery due to their relevance in water resource management tasks. Our experimental results demonstrate the effectiveness of Hydro‐GAN in generating high‐resolution water body maps, outperforming traditional methods in terms of boundary accuracy and overall quality.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    