System-on-Chips (SoCs) are designed using different Intellectual Property (IP) blocks from multiple third-party vendors to reduce design cost while meeting aggressive time-to-market constraints. Designing trustworthy SoCs need to address the increasing concerns related to supply-chain security vulnerabilities. Malicious implants on IPs, such as Hardware Trojans (HTs) are one of the significant security threats in designing trustworthy SoCs. It is a major challenge to detect Trojans in complex multi-processor SoCs using conventional pre- and post-silicon validation methodologies. Packet-based Network-on-Chip (NoC) is a widely used solution for on-chip communication between IPs in complex SoCs. The focus of this paper is to enable trusted NoC communication in the presence of potentially untrusted IPs. This paper makes three key contributions. (1) We model an HT in NoC router that activates misrouting of the packets to initiate denial of service, delay of service, and injection suppression. (2) We propose a dynamic shielding technique that isolates the identified HT infected IP. (3) We present a secure routing algorithm to bypass the HT infected NoC router. Experimental results on HT infected NoC demonstrate that the proposed method reduces effective average packet latency by 38% in real benchmarks and 48% in synthetic traffic patterns. Our method also increasesmore »
AGAPE: Anomaly Detection with Generative Adversarial Network for Improved Performance, Energy, and Security in Manycore Systems
The security of manycore systems has become increasingly critical. In system-on-chips (SoCs), Hardware Trojans (HTs) manipulate the functionalities of the routing components to saturate the on-chip network, degrade performance, and result in the leakage of sensitive data. Existing HT detection techniques, including runtime monitoring and state-of-the-art learning-based methods, are unable to timely and accurately identify the implanted HTs, due to the increasingly dynamic and complex nature of on-chip communication behaviors. We propose AGAPE, a novel Generative Adversarial Network (GAN)-based anomaly detection and mitigation method against HTs for secured on-chip communication. AGAPE learns the distribution of the multivariate time series of a number of NoC attributes captured by on-chip sensors under both HT-free and HT-infected working conditions. The proposed GAN can learn the potential latent interactions among different runtime attributes concurrently, accurately distinguish abnormal attacked situations from normal SoC behaviors, and identify the type and location of the implanted HTs. Using the detection results, we apply the most suitable protection techniques to each type of detected HTs instead of simply isolating the entire HT-infected router, with the aim to mitigate security threats as well as reducing performance loss. Simulation results show that AGAPE enhances the HT detection accuracy by 19%, reduces more »
- Publication Date:
- NSF-PAR ID:
- 10328695
- Journal Name:
- Design, Automation & Test in Europe Conference & Exhibition (DATE)
- Page Range or eLocation-ID:
- 849 to 854
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
State-of-the-art System-on-Chip (SoC) designs consist of many Intellectual Property (IP) cores that interact using a Network-on-Chip (NoC) architecture. SoC designers increasingly rely on global supply chains for obtaining third-party IPs. In addition to inherent vulnerabilities associated with utilizing third-party IPs, NoC based SoCs enable attackers to exploit the distributed nature of NoC and its connectivity with various IPs to launch a plethora of attacks. Specifically, Denial-of-Service (DoS) attacks pose a serious threat in degrading the SoC performance by flooding the NoC with unnecessary packets. In this paper, we present a machine learning-based runtime monitoring mechanism to detect DoS attacks. The models are statically trained and used for runtime attack detection leading to minimum runtime performance overhead. Our approach is capable of detecting DoS attacks with high accuracy, even in the presence of unpredictable NoC traffic patterns caused by various application mappings. We extensively explore machine learning models and features to provide a comprehensive study on how to use machine learning for DoS attack detection in NoC-based SoCs.
-
Thispaperdescribesanewphysicalsidechannel,i.e. the backscattering side channel, that is created by transmitting a signal toward the IC, where the internal impedance changes caused by on-chip switching activity modulate the signal that is backscattered (reflected) from the IC. To demonstrate how this new side-channel can be used to detect small changes in circuit impedances, we propose a new method for nondestructively detecting hardware Trojans (HTs) from outside of the chip. We experimentally confirm, using measurements on one physical instance for training and nine other physical instances for testing, that the new side-channel, when combined with an HT detection method, allows detection of a dormant HT in 100% of the HT-afflicted measurements for a number of different HTs, while producing no false positives in HT free measurements. Furthermore, additional experiments are conducted to compare the backscattering-based detection to one that uses the traditional EM-emanation-based side channel. These results show that backscattering-based detection outperforms the EM side channel, confirm that dormant HTs are much more difficult for detection than HTs that have been activated, and show how detection is affected by changing the HT’s size and physical location on the IC.
-
Thispaperdescribesanewphysicalsidechannel,i.e. the backscattering side channel, that is created by transmitting a signal toward the IC, where the internal impedance changes caused by on-chip switching activity modulate the signal that is backscattered (reflected) from the IC. To demonstrate how this new side-channel can be used to detect small changes in circuit impedances, we propose a new method for nondestructively detecting hardware Trojans (HTs) from outside of the chip. We experimentally confirm, using measurements on one physical instance for training and nine other physical instances for testing, that the new side-channel, when combined with an HT detection method, allows detection of a dormant HT in 100% of the HT-afflicted measurements for a number of different HTs, while producing no false positives in HT free measurements. Furthermore, additional experiments are conducted to compare the backscattering-based detection to one that uses the traditional EM-emanation-based side channel. These results show that backscattering-based detection outperforms the EM side channel, confirm that dormant HTs are much more difficult for detection than HTs that have been activated, and show how detection is affected by changing the HT’s size and physical location on the IC.
-
Modern network-on-chip (NoC) hardware is an emerging target for side-channel security attacks. A recent work implemented and characterized timing-based software side-channel attacks that target NoC hardware on a real multicore machine. This article studies the impact of system noise on prior attack setups and shows that high noise is sufficient to defeat the attacker. We propose an information theory-based attack setup that uses repetition codes and differential signaling techniques to de-noise the unwanted noise from the NoC channel to successfully implement a practical covert-communication attack on a real multicore machine. The evaluation demonstrates an attack efficacy of 97%, 88%, and 78% under low, medium, and high external noise, respectively. Our attack characterization reveals that noise-based mitigation schemes are inadequate to prevent practical covert communication, and thus isolation-based mitigation schemes must be considered to ensure strong security. Isolation-based schemes are shown to mitigate timing-based side-channel attacks. However, their impact on the performance of real-world security critical workloads is not well understood in the literature. This article evaluates the performance implications of state-of-the-art spatial and temporal isolation schemes. The performance impact is shown to range from 2–3% for a set of graph and machine learning workloads, thus making isolation-based mitigations practical.