skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quadrilateral mesh generation II: Meromorphic quartic differentials and Abel–Jacobi condition
This work discovers the equivalence relation between quadrilateral meshes and meromorphic quartic differentials. Each quad-mesh induces a conformal structure of the surface, and a meromorphic quartic differential, where the configuration of singular vertices corresponds to the configurations of the poles and zeros (divisor) of the meromorphic differential. Due to Riemann surface theory, the configuration of singularities of a quad-mesh satisfies the Abel–Jacobi condition. Inversely, if a divisor satisfies the Abel–Jacobi condition, then there exists a meromorphic quartic differential whose divisor equals the given one. Furthermore, if the meromorphic quartic differential is with finite trajectories, then it also induces a quad-mesh, the poles and zeros of the meromorphic differential correspond to the singular vertices of the quad-mesh. Besides the theoretic proofs, the computational algorithm for verification of Abel–Jacobi condition is also explained in detail. Furthermore, constructive algorithm of meromorphic quartic differential on genus zero surfaces is proposed, which is based on the global algebraic representation of meromorphic differentials. Our experimental results demonstrate the efficiency and efficacy of the algorithm. This opens up a novel direction for quad-mesh generation using algebraic geometric approach.  more » « less
Award ID(s):
1762287
PAR ID:
10291667
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Computer methods in applied mechanics and engineering
Volume:
366
ISSN:
1879-2138
Page Range / eLocation ID:
112980
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This work proposes a rigorous and practical algorithm for quad-mesh generation based the Abel-Jacobi theory of algebraic \textcolor{red}{curves}. We prove sufficient and necessary conditions for a flat metric with cone singularities to be compatible with a quad-mesh, in terms of the deck-transformation, then develop an algorithm based on the theorem. The algorithm has two stages: first, a meromorphic quartic differential is generated to induce a T-mesh; second, the edge lengths of the T-mesh are adjusted by solving a linear system to satisfy the deck transformation condition, which produces a quad-mesh. In the first stage, the algorithm pipeline can be summarized as follows: calculate the homology group; compute the holomorphic differential group; construct the period matrix of the surface and Jacobi variety; calculate the Abel-Jacobi map for a given divisor; optimize the divisor to satisfy the Abel-Jacobi condition by integer programming; compute \textcolor{red}{a} flat Riemannian metric with cone singularities at the divisor by Ricci flow; \textcolor{red}{isometrically} immerse the surface punctured at the divisor onto the complex plane and pull back the canonical holomorphic differential to the surface to obtain the meromorphic quartic differential; construct a motorcycle graph to generate a T-Mesh. In the second stage, the deck transformation constraints are formulated as a linear equation system of the edge lengths of the T-mesh. The solution provides a flat metric with integral deck transformations, which leads to the final quad-mesh. The proposed method is rigorous and practical. The T-mesh and quad-mesh results can be applied for constructing Splines directly. The efficiency and efficacy of the proposed algorithm are demonstrated by experimental results on surfaces with complicated topologies and geometries. 
    more » « less
  2. Abstract We provide a complete description of realizable period representations for meromorphic differentials on Riemann surfaces with prescribed orders of zeros and poles, hyperelliptic structure and spin parity. 
    more » « less
  3. Abstract We prove that the nonvarying strata of abelian and quadratic differentials in low genus have trivial tautological rings and are affine varieties. We also prove that strata ofk-differentials of infinite area are affine varieties for allk. Vanishing of homology in degree higher than the complex dimension follows as a consequence for these affine strata. Moreover we prove that the stratification of the Hodge bundle for abelian and quadratic differentials of finite area is extremal in the sense that merging two zeros in each stratum leads to an extremal effective divisor in the boundary. A common feature throughout these results is a relation of divisor classes in strata of differentials as well as its incarnation in Teichmüller dynamics. 
    more » « less
  4. It is well known that the Painlevé equations can formally degenerate to autonomous differential equations with elliptic function solutions in suitable scaling limits. A way to make this degeneration rigorous is to apply Deift-Zhou steepest-descent techniques to a Riemann-Hilbert representation of a family of solutions. This method leads to an explicit approximation formula in terms of theta functions and related algebro-geometric ingredients that is difficult to directly link to the expected limiting differential equation. However, the approximation arises from an outer parametrix that satisfies relatively simple conditions. By applying a method that we learned from Alexander Its, it is possible to use these simple conditions to directly obtain the limiting differential equation, bypassing the details of the algebro-geometric solution of the outer parametrix problem. In this paper, we illustrate the use of this method to relate an approximation of the algebraic solutions of the Painlevé-III (D$$_7$$) equation valid in the part of the complex plane where the poles and zeros of the solutions asymptotically reside to a form of the Weierstraß equation. 
    more » « less
  5. We construct a monomorphism of the De Rham complex of scalar multivalued meromorphic forms on the projective line, holomorphic on the complement to a finite set of points, to the chain complex of the Lie algebra of sl_2-valued algebraic functions on the same complement with coefficients in a tensor product of contragradient Verma modules over the affine Lie algebra \hat{sl}_2. We show that the existence of singular vectors in the Verma modules (the Malikov-Feigin-Fuchs singular vectors) is reflected in the new relations between the cohomology classes of logarithmic differential forms. 
    more » « less