Electronic Health Records (EHRs) have become increasingly popular in recent years, providing a convenient way to store, manage and share relevant information among healthcare providers. However, as EHRs contain sensitive personal information, ensuring their security and privacy is most important. This paper reviews the key aspects of EHR security and privacy, including authentication, access control, data encryption, auditing, and risk management. Additionally, the paper dis- cusses the legal and ethical issues surrounding EHRs, such as patient consent, data ownership, and breaches of confidentiality. Effective implementation of security and privacy measures in EHR systems requires a multi-disciplinary approach involving healthcare providers, IT specialists, and regulatory bodies. Ultimately, the goal is to come upon a balance between protecting patient privacy and ensuring timely access to critical medical information for feature healthcare delivery. 
                        more » 
                        « less   
                    
                            
                            Generating Connected Synthetic Electronic Health Records and Social Media Data for Modeling and Simulation
                        
                    
    
            Research and experimentation using big data sets, specifically large sets of electronic health records (EHR) and social media data, is demonstrating the potential to understand the spread of diseases and a variety of other issues. Applications of advanced algorithms, machine learning, and artificial intelligence indicate a potential for rapidly advancing improvements in public health. For example, several reports indicate that social media data can be used to predict disease outbreak and spread (Brown, 2015). Since real-world EHR data has complicated security and privacy issues preventing it from being widely used by researchers, there is a real need to synthetically generate EHR data that is realistic and representative. Current EHR generators, such as Syntheaä (Walonoski et al., 2018) only simulate and generate pure medical-related data. However, adding patients’ social media data with their simulated EHR data would make combined data more comprehensive and realistic for healthcare research. This paper presents a patients’ social media data generator that extends an EHR data generator. By adding coherent social media data to EHR data, a variety of issues can be examined for emerging interests, such as where a contagious patient may have been and others with whom they may have been in contact. Social media data, specifically Twitter data, is generated with phrases indicating the onset of symptoms corresponding to the synthetically generated EHR reports of simulated patients. This enables creation of an open data set that is scalable up to a big-data size, and is not subject to the security, privacy concerns, and restrictions of real healthcare data sets. This capability is important to the modeling and simulation community, such as scientists and epidemiologists who are developing algorithms to analyze the spread of diseases. It enables testing a variety of analytics without revealing real-world private patient information. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1915780
- PAR ID:
- 10291773
- Date Published:
- Journal Name:
- Interservice/Industry Training, Simulation and Education Conference (I/ITSEC)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            There is an increasing demand for processing large volumes of unstructured data for a wide variety of applications. However, protection measures for these big data sets are still in their infancy, which could lead to significant security and privacy issues. Attribute-based access control (ABAC) provides a dynamic and flexible solution that is effective for mediating access. We analyzed and implemented a prototype application of ABAC to large dataset processing in Amazon Web Services, using open-source versions of Apache Hadoop, Ranger, and Atlas. The Hadoop ecosystem is one of the most popular frameworks for large dataset processing and storage and is adopted by major cloud service providers. We conducted a rigorous analysis of cybersecurity in implementing ABAC policies in Hadoop, including developing a synthetic dataset of information at multiple sensitivity levels that realistically represents healthcare and connected social media data. We then developed Apache Spark programs that extract, connect, and transform data in a manner representative of a realistic use case. Our result is a framework for securing big data. Applying this framework ensures that serious cybersecurity concerns are addressed. We provide details of our analysis and experimentation code in a GitHub repository for further research by the community.more » « less
- 
            Patient health records(PHRs) are crucial and sensitive as they contain essential information and are frequently shared among healthcare entities. This information must remain correct, up to date, private and accessible only to the authorized entities. Moreover, access must also be assured during health emergency crises such as the recent outbreak, which represents the greatest test of the flexibility and the efficiency of PHR sharing among healthcare providers, which ended up an immense interruption to the healthcare industry. Moreover, the right to privacy is the most fundamental right for a patient. Hence, the patient health records in the healthcare sector have faced issues with privacy breaches, insider outside attacks, and unauthorized access to crucial patients’ records. As a result, it pushes more patients to demand more control, security, and a smoother experience when they want to access their health records. Furthermore, the lack of interoperability among the healthcare system and providers and the added weight of cyber-attacks on an already overwhelmed system have called for an immediate solution. In this work, we developed a secured blockchain framework that safeguards patients’ full control over their health data which can be stored in their private IPFS and later shared with an authorized provider. Furthermore, the system ensures privacy and security while handling patient data, which can only be shared with the patients. The proposed Security and privacy analysis show promising results in providing time savings, enhanced confidentiality, and less disruption in patient-provider interactions.more » « less
- 
            The migration to electronic health records (EHR) in the healthcare industry has raised issues with respect to security and privacy. One issue that has become a concern for healthcare providers, insurance companies, and pharmacies is patient health information (PHI) leaks because PHI leaks can lead to violation of privacy laws, which protect the privacy of individuals’ identifiable health information, potentially resulting in a healthcare crisis. This study explores the issue of PHI leaks from an access control viewpoint. We utilize access control policies and PHI leak scenarios derived from semi structured interviews with four healthcare practitioners and use the lens of activity theory to articulate the design of an access control model for detecting and mitigating PHI leaks. Subsequently, we follow up with a prototype as a proof of concept.more » « less
- 
            Accurate and explainable health event predictions are becoming crucial for healthcare providers to develop care plans for patients. The availability of electronic health records (EHR) has enabled machine learning advances in providing these predictions. However, many deep-learning-based methods are not satisfactory in solving several key challenges: 1) effectively utilizing disease domain knowledge; 2) collaboratively learning representations of patients and diseases; and 3) incorporating unstructured features. To address these issues, we propose a collaborative graph learning model to explore patient-disease interactions and medical domain knowledge. Our solution is able to capture structural features of both patients and diseases. The proposed model also utilizes unstructured text data by employing an attention manipulating strategy and then integrates attentive text features into a sequential learning process. We conduct extensive experiments on two important healthcare problems to show the competitive prediction performance of the proposed method compared with various state-of-the-art models. We also confirm the effectiveness of learned representations and model interpretability by a set of ablation and case studies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    