Abstract Understanding dynamic human mobility changes and spatial interaction patterns at different geographic scales is crucial for assessing the impacts of non-pharmaceutical interventions (such as stay-at-home orders) during the COVID-19 pandemic. In this data descriptor, we introduce a regularly-updated multiscale dynamic human mobility flow dataset across the United States, with data starting from March 1st, 2020. By analysing millions of anonymous mobile phone users’ visits to various places provided by SafeGraph, the daily and weekly dynamic origin-to-destination (O-D) population flows are computed, aggregated, and inferred at three geographic scales: census tract, county, and state. There is high correlation between our mobility flow dataset and openly available data sources, which shows the reliability of the produced data. Such a high spatiotemporal resolution human mobility flow dataset at different geographic scales over time may help monitor epidemic spreading dynamics, inform public health policy, and deepen our understanding of human behaviour changes under the unprecedented public health crisis. This up-to-date O-D flow open data can support many other social sensing and transportation applications.
more »
« less
ODT FLOW: Extracting, analyzing, and sharing multi-source multi-scale human mobility
In response to the soaring needs of human mobility data, especially during disaster events such as the COVID-19 pandemic, and the associated big data challenges, we develop a scalable online platform for extracting, analyzing, and sharing multi-source multi-scale human mobility flows. Within the platform, an origin-destination-time (ODT) data model is proposed to work with scalable query engines to handle heterogenous mobility data in large volumes with extensive spatial coverage, which allows for efficient extraction, query, and aggregation of billion-level origin-destination (OD) flows in parallel at the server-side. An interactive spatial web portal, ODT Flow Explorer, is developed to allow users to explore multi-source mobility datasets with user-defined spatiotemporal scales. To promote reproducibility and replicability, we further develop ODT Flow REST APIs that provide researchers with the flexibility to access the data programmatically via workflows, codes, and programs. Demonstrations are provided to illustrate the potential of the APIs integrating with scientific workflows and with the Jupyter Notebook environment. We believe the platform coupled with the derived multi-scale mobility data can assist human mobility monitoring and analysis during disaster events such as the ongoing COVID-19 pandemic and benefit both scientific communities and the general public in understanding human mobility dynamics.
more »
« less
- PAR ID:
- 10291812
- Editor(s):
- Yang, Chaowei
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 16
- Issue:
- 8
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0255259
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
COVID-19 had an unprecedented impact on scientific collaboration. The pandemic and its broad response from the scientific community has forged new relationships among domain experts, mathematical modelers, and scientific computing specialists. Computationally, however, it also revealed critical gaps in the ability of researchers to exploit advanced computing systems. These challenging areas include gaining access to scalable computing systems, porting models and workflows to new systems, sharing data of varying sizes, and producing results that can be reproduced and validated by others. Informed by our team’s work in supporting public health decision makers during the COVID-19 pandemic and by the identified capability gaps in applying high-performance computing (HPC) to the modeling of complex social systems, we present the goals, requirements, and initial implementation of OSPREY, an open science platform for robust epidemic analysis. The prototype implementation demonstrates an integrated, algorithm-driven HPC workflow architecture, coordinating tasks across federated HPC resources, with robust, secure and automated access to each of the resources. We demonstrate scalable and fault-tolerant task execution, an asynchronous API to support fast time-to-solution algorithms, an inclusive, multi-language approach, and efficient wide-area data management. The example OSPREY code is made available on a public repository.more » « less
-
The novel coronavirus disease (COVID-19) pandemic has impacted every facet of society. One of the non-pharmacological measures to contain the COVID-19 infection is social distancing. Federal, state, and local governments have placed multiple executive orders for human mobility reduction to slow down the spread of COVID-19. This paper uses geotagged tweets data to reveal the spatiotemporal human mobility patterns during this COVID-19 pandemic in New York City. With New York City open data, human mobility pattern changes were detected by different categories of land use, including residential, parks, transportation facilities, and workplaces. This study further compares human mobility patterns by land use types based on an open social media platform (Twitter) and the human mobility patterns revealed by Google Community Mobility Report cell phone location, indicating that in some applications, open-access social media data can generate similar results to private data. The results of this study can be further used for human mobility analysis and the battle against COVID-19.more » « less
-
The COVID-19 pandemic has dramatically transformed human mobility patterns. Therefore, human mobility prediction for the “new normal” is crucial to infrastructure redesign, emergency management, and urban planning post the pandemic. This paper aims to predict people’s number of visits to various locations in New York City using COVID and mobility data in the past two years. To quantitatively model the impact of COVID cases on human mobility patterns and predict mobility patterns across the pandemic period, this paper develops a model CCAAT-GCN (Cross- andContext-Attention based Spatial-TemporalGraphConvolutionalNetworks). The proposed model is validated using SafeGraph data in New York City from August 2020 to April 2022. A rich set of baselines are performed to demonstrate the performance of our proposed model. Results demonstrate the superior performance of our proposed method. Also, the attention matrix learned by our model exhibits a strong alignment with the COVID-19 situation and the points of interest within the geographic region. This alignment suggests that the model effectively captures the intricate relationships between COVID-19 case rates and human mobility patterns. The developed model and findings can offer insights into the mobility pattern prediction for future disruptive events and pandemics, so as to assist with emergency preparedness for planners, decision-makers and policymakers.more » « less
-
Abstract—Periods of unique economic distress such as the COVID-19 pandemic can be quite difficult for small businesses. Challenges acquiring the supplies necessary to adhere to safety regulations created in the wake of such events can introduce stress on these businesses. This is further exacerbated when supply chains have slowed down, leading to global shortages from most large suppliers. This paper proposes a platform to aid such businesses in procuring COVID-19 related supplies such as Personal Protective Equipment (PPE) from one another, leveraging advanced data acquisition, integration, and Natural Language Processing (NLP) methods. With the pandemic end in sight, the platform described in this paper can be reused for other emergencies such as hurricanes, floods, among others. The proposed platform supports business transactions within a Buyer’s Club (BC), keyword-based sourcing of new businesses to join the platform, and matching products to relevant regulations using greater-than-word length encoding, helping businesses comply with the ever-changing regulatory landscape. Index Terms—COVID-19, Disaster, Natural Language Processing, Data Acquisition, Data Retrieval, User Interfacesmore » « less