skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Spatiotemporal Patterns of Human Mobility and Its Association with Land Use Types during COVID-19 in New York City
The novel coronavirus disease (COVID-19) pandemic has impacted every facet of society. One of the non-pharmacological measures to contain the COVID-19 infection is social distancing. Federal, state, and local governments have placed multiple executive orders for human mobility reduction to slow down the spread of COVID-19. This paper uses geotagged tweets data to reveal the spatiotemporal human mobility patterns during this COVID-19 pandemic in New York City. With New York City open data, human mobility pattern changes were detected by different categories of land use, including residential, parks, transportation facilities, and workplaces. This study further compares human mobility patterns by land use types based on an open social media platform (Twitter) and the human mobility patterns revealed by Google Community Mobility Report cell phone location, indicating that in some applications, open-access social media data can generate similar results to private data. The results of this study can be further used for human mobility analysis and the battle against COVID-19.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ISPRS International Journal of Geo-Information
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the space-time dynamics of human activities is essential in studying human security issues such as climate change impacts, pandemic spreading, or urban sustainability. Geotagged social media posts provide an open and space-time continuous data source with user locations which is convenient for studying human movement. However, the reliability of Chinese geotagged social media data for representing human mobility remains unclear. This study compares human movement data derived from the posts of Sina Weibo, one of the largest social media software in China, and that of Baidu Qianxi, a high-resolution human movement dataset from ‘Baidu Map’, a popular location-based service in China with 1.3 billion users. Correlation analysis was conducted from multiple dimensions of time periods (weekly and monthly), geographic scales (cities and provinces), and flow directions (inflow and outflow), and a case study on COVID-19 transmission was further explored with such data. The result shows that Sina Weibo data can reveal similar patterns as that of Baidu Qianxi, and that the correlation is higher at the provincial level than at the city level and higher at the monthly scale than at the weekly scale. The study also revealed spatial variations in the degree of similarity between the two sources. Findings from this study reveal the values and properties and spatiotemporal heterogeneity of human mobility data extracted from Weibo tweets, providing a reference for the proper use of social media posts as the data sources for human mobility studies. 
    more » « less
  2. New York has become one of the worst-affected COVID-19 hotspots and a pandemic epicenter due to the ongoing crisis. This paper identifies the impact of the pandemic and the effectiveness of government policies on human mobility by analyzing multiple datasets available at both macro and micro levels for New York City. Using data sources related to population density, aggregated population mobility, public rail transit use, vehicle use, hotspot and non-hotspot movement patterns, and human activity agglomeration, we analyzed the inter-borough and intra-borough movement for New York City by aggregating the data at the borough level. We also assessed the internodal population movement amongst hotspot and non-hotspot points of interest for the month of March and April 2020. Results indicate a drop of about 80% in people’s mobility in the city, beginning in mid-March. The movement to and from Manhattan showed the most disruption for both public transit and road traffic. The city saw its first case on March 1, 2020, but disruptions in mobility can be seen only after the second week of March when the shelter in place orders was put in effect. Owing to people working from home and adhering to stay-at-home orders, Manhattan saw the largest disruption to both inter- and intra-borough movement. But the risk of spread of infection in Manhattan turned out to be high because of higher hotspot-linked movements. The stay-at-home restrictions also led to an increased population density in Brooklyn and Queens as people were not commuting to Manhattan. Insights obtained from this study would help policymakers better understand human behavior and their response to the news and governmental policies. 
    more » « less
  3. Abstract Using data from New York City from January 2020 to April 2020, we found an estimated 28-day lag between the onset of reduced subway use and the end of the exponential growth period of severe acute respiratory syndrome coronavirus 2 within New York City boroughs. We also conducted a cross-sectional analysis of the associations between human mobility (i.e., subway ridership) on the week of April 11, 2020, sociodemographic factors, and coronavirus disease 2019 (COVID-19) incidence as of April 26, 2020. Areas with lower median income, a greater percentage of individuals who identify as non-White and/or Hispanic/Latino, a greater percentage of essential workers, and a greater percentage of health-care essential workers had more mobility during the pandemic. When adjusted for the percentage of essential workers, these associations did not remain, suggesting essential work drives human movement in these areas. Increased mobility and all sociodemographic variables (except percentage of people older than 75 years old and percentage of health-care essential workers) were associated with a higher rate of COVID-19 cases per 100,000 people, when adjusted for testing effort. Our study demonstrates that the most socially disadvantaged not only are at an increased risk for COVID-19 infection, they lack the privilege to fully engage in social distancing interventions. 
    more » « less
  4. null (Ed.)
    We examine the uneven social and spatial distributions of COVID-19 and their relationships with indicators of social vulnerability in the U.S. epicenter, New York City (NYC). As of July 17th, 2020, NYC, despite having only 2.5% of the U.S. population, has [Formula: see text]6% of all confirmed cases, and [Formula: see text]16% of all deaths, making it a key learning ground for the social dynamics of the disease. Our analysis focuses on the multiple potential social, economic, and demographic drivers of disproportionate impacts in COVID-19 cases and deaths, as well as population rates of testing. Findings show that immediate impacts of COVID-19 largely fall along lines of race and class. Indicators of poverty, race, disability, language isolation, rent burden, unemployment, lack of health insurance, and housing crowding all significantly drive spatial patterns in prevalence of COVID-19 testing, confirmed cases, death rates, and severity. Income in particular has a consistent negative relationship with rates of death and disease severity. The largest differences in social vulnerability indicators are also driven by populations of people of color, poverty, housing crowding, and rates of disability. Results highlight the need for targeted responses to address injustice of COVID-19 cases and deaths, importance of recovery strategies that account for differential vulnerability, and provide an analytical approach for advancing research to examine potential similar injustice of COVID-19 in other U.S. cities. Significance Statement Communities around the world have variable success in mitigating the social impacts of COVID-19, with many urban areas being hit particularly hard. Analysis of social vulnerability to COVID-19 in the NYC, the U.S. national epicenter, shows strongly disproportionate impacts of the pandemic on low income populations and communities of color. Results highlight the class and racial inequities of the coronavirus pandemic in NYC, and the need to unpack the drivers of social vulnerability. To that aim, we provide a replicable framework for examining patterns of uneven social vulnerability to COVID-19- using publicly available data which can be readily applied in other study regions, especially within the U.S.A. This study is important to inform public and policy debate over strategies for short- and long-term responses that address the injustice of disproportionate impacts of COVID-19. Although similar studies examining social vulnerability and equity dimensions of the COVID-19 outbreak in cities across the U.S. have been conducted (Cordes and Castro 2020, Kim and Bostwick 2002, Gaynor and Wilson 2020; Wang et al. 2020; Choi and Unwin 2020), this study provides a more comprehensive analysis in NYC that extends previous contributions to use the highest resolution spatial units for data aggregation (ZCTAs). We also include mortality and severity rates as key indicators and provide a replicable framework that draws from the Centers for Disease Control and Prevention’s Social Vulnerability indicators for communities in NYC. 
    more » « less
  5. null (Ed.)
    Urban green spaces provide a range of environmental and health benefits, which may become even more critical during times of crisis such as the current COVID-19 pandemic. However, with a radical shift in mobility, additional concerns over safety, and access temporarily restricted during the implementation of social distancing policies, the experience and use of urban green spaces may be reduced. This is particularly concerning for densely populated cities like New York, considered the first U.S. epicenter or vanguard of the outbreak. To better understand the impact of COVID-19 on the perception and use of urban green spaces, we conducted a social survey during the early months of the Covid-19 pandemic in New York City (May 13 - June 15, 2020). The results of the survey show respondents continued to use urban green spaces during the pandemic and consider them to be more important for mental and physical health than before the pandemic began. However, the study revealed a pattern of concerns residents have about green space accessibility and safety, and found key differences between the concerns and needs of different populations, suggesting a crucial role for inclusive decision-making, support for additional management strategies, and urban ecosystem governance that reflect the differential values, needs and concerns of communities across the City. As urban centers face looming budget cuts and reduced capacity, this study provides some empirical evidence to illustrate the value of urban green spaces as critical urban infrastructure, and may have implications for funding, policy, and management, of urban green spaces in NYC, with potential applications to other cities, particularly during times of crisis. 
    more » « less