The COVID-19 pandemic has dramatically transformed human mobility patterns. Therefore, human mobility prediction for the “new normal” is crucial to infrastructure redesign, emergency management, and urban planning post the pandemic. This paper aims to predict people’s number of visits to various locations in New York City using COVID and mobility data in the past two years. To quantitatively model the impact of COVID cases on human mobility patterns and predict mobility patterns across the pandemic period, this paper develops a model CCAAT-GCN (Cross- andContext-Attention based Spatial-TemporalGraphConvolutionalNetworks). The proposed model is validated using SafeGraph data in New York City from August 2020 to April 2022. A rich set of baselines are performed to demonstrate the performance of our proposed model. Results demonstrate the superior performance of our proposed method. Also, the attention matrix learned by our model exhibits a strong alignment with the COVID-19 situation and the points of interest within the geographic region. This alignment suggests that the model effectively captures the intricate relationships between COVID-19 case rates and human mobility patterns. The developed model and findings can offer insights into the mobility pattern prediction for future disruptive events and pandemics, so as to assist with emergency preparedness for planners, decision-makers and policymakers.
more »
« less
Spatiotemporal Patterns of Human Mobility and Its Association with Land Use Types during COVID-19 in New York City
The novel coronavirus disease (COVID-19) pandemic has impacted every facet of society. One of the non-pharmacological measures to contain the COVID-19 infection is social distancing. Federal, state, and local governments have placed multiple executive orders for human mobility reduction to slow down the spread of COVID-19. This paper uses geotagged tweets data to reveal the spatiotemporal human mobility patterns during this COVID-19 pandemic in New York City. With New York City open data, human mobility pattern changes were detected by different categories of land use, including residential, parks, transportation facilities, and workplaces. This study further compares human mobility patterns by land use types based on an open social media platform (Twitter) and the human mobility patterns revealed by Google Community Mobility Report cell phone location, indicating that in some applications, open-access social media data can generate similar results to private data. The results of this study can be further used for human mobility analysis and the battle against COVID-19.
more »
« less
- Award ID(s):
- 2028791
- PAR ID:
- 10345839
- Date Published:
- Journal Name:
- ISPRS International Journal of Geo-Information
- Volume:
- 10
- Issue:
- 5
- ISSN:
- 2220-9964
- Page Range / eLocation ID:
- 344
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The COVID-19 pandemic brought unprecedented changes to various aspects of daily life, profoundly affecting human mobility. These changes in mobility patterns were not uniform, as numerous factors, including public health measures, socioeconomic status, and urban infrastructure, influenced them. This study examines human mobility changes during COVID-19 in San Diego County and New York City, employing Latent Profile Analysis (LPA) and various network measures to analyze connectivity and socioeconomic status (SES) within these regions. While many COVID-19 and mobility studies have revealed overall reductions in mobility or changes in mobility patterns, they often fail to specify ’where’ these changes occur and lack a detailed understanding of the relationship between SES and mobility changes. This creates a significant research gap in understanding the spatial and socioeconomic dimensions of mobility changes during the pandemic. This study aims to address this gap by providing a comprehensive analysis of how mobility patterns varied across different socioeconomic groups during the pandemic. By comparing mobility patterns before and during the pandemic, we aim to shed light on how this unprecedented event impacted different communities. Our research contributes to the literature by employing network science to examine COVID-19’s impact on human mobility, integrating SES variables into the analysis of mobility networks. This approach provides a detailed understanding of how social and economic factors influence movement patterns and urban connectivity, highlighting disparities in mobility and access across different socioeconomic groups. The results identify areas functioning as hubs or bridges and illustrate how these roles changed during COVID-19, revealing existing societal inequalities. Specifically, we observed that urban parks and rural areas with national parks became significant mobility hubs during the pandemic, while affluent areas with high educational attainment saw a decline in centrality measures, indicating a shift in urban mobility dynamics and exacerbating pre-existing socioeconomic disparities.more » « less
-
Understanding the space-time dynamics of human activities is essential in studying human security issues such as climate change impacts, pandemic spreading, or urban sustainability. Geotagged social media posts provide an open and space-time continuous data source with user locations which is convenient for studying human movement. However, the reliability of Chinese geotagged social media data for representing human mobility remains unclear. This study compares human movement data derived from the posts of Sina Weibo, one of the largest social media software in China, and that of Baidu Qianxi, a high-resolution human movement dataset from ‘Baidu Map’, a popular location-based service in China with 1.3 billion users. Correlation analysis was conducted from multiple dimensions of time periods (weekly and monthly), geographic scales (cities and provinces), and flow directions (inflow and outflow), and a case study on COVID-19 transmission was further explored with such data. The result shows that Sina Weibo data can reveal similar patterns as that of Baidu Qianxi, and that the correlation is higher at the provincial level than at the city level and higher at the monthly scale than at the weekly scale. The study also revealed spatial variations in the degree of similarity between the two sources. Findings from this study reveal the values and properties and spatiotemporal heterogeneity of human mobility data extracted from Weibo tweets, providing a reference for the proper use of social media posts as the data sources for human mobility studies.more » « less
-
New York has become one of the worst-affected COVID-19 hotspots and a pandemic epicenter due to the ongoing crisis. This paper identifies the impact of the pandemic and the effectiveness of government policies on human mobility by analyzing multiple datasets available at both macro and micro levels for New York City. Using data sources related to population density, aggregated population mobility, public rail transit use, vehicle use, hotspot and non-hotspot movement patterns, and human activity agglomeration, we analyzed the inter-borough and intra-borough movement for New York City by aggregating the data at the borough level. We also assessed the internodal population movement amongst hotspot and non-hotspot points of interest for the month of March and April 2020. Results indicate a drop of about 80% in people’s mobility in the city, beginning in mid-March. The movement to and from Manhattan showed the most disruption for both public transit and road traffic. The city saw its first case on March 1, 2020, but disruptions in mobility can be seen only after the second week of March when the shelter in place orders was put in effect. Owing to people working from home and adhering to stay-at-home orders, Manhattan saw the largest disruption to both inter- and intra-borough movement. But the risk of spread of infection in Manhattan turned out to be high because of higher hotspot-linked movements. The stay-at-home restrictions also led to an increased population density in Brooklyn and Queens as people were not commuting to Manhattan. Insights obtained from this study would help policymakers better understand human behavior and their response to the news and governmental policies.more » « less
-
Abstract Using data from New York City from January 2020 to April 2020, we found an estimated 28-day lag between the onset of reduced subway use and the end of the exponential growth period of severe acute respiratory syndrome coronavirus 2 within New York City boroughs. We also conducted a cross-sectional analysis of the associations between human mobility (i.e., subway ridership) on the week of April 11, 2020, sociodemographic factors, and coronavirus disease 2019 (COVID-19) incidence as of April 26, 2020. Areas with lower median income, a greater percentage of individuals who identify as non-White and/or Hispanic/Latino, a greater percentage of essential workers, and a greater percentage of health-care essential workers had more mobility during the pandemic. When adjusted for the percentage of essential workers, these associations did not remain, suggesting essential work drives human movement in these areas. Increased mobility and all sociodemographic variables (except percentage of people older than 75 years old and percentage of health-care essential workers) were associated with a higher rate of COVID-19 cases per 100,000 people, when adjusted for testing effort. Our study demonstrates that the most socially disadvantaged not only are at an increased risk for COVID-19 infection, they lack the privilege to fully engage in social distancing interventions.more » « less