The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood–brain barrier
- Award ID(s):
- 2034780
- PAR ID:
- 10291832
- Date Published:
- Journal Name:
- Neurobiology of Disease
- Volume:
- 146
- Issue:
- C
- ISSN:
- 0969-9961
- Page Range / eLocation ID:
- 105131
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Reducing the Schottky barrier height and Fermi level de‐pinning in metal‐organic semiconductor contacts are crucial for enhancing the performance of organic transistors. The reduction of the Schottky barrier height in bottom‐contact top‐gate organic transistors is demonstrated by adding 1 nm thick atomic layer deposited Al2O3on the source and drain contacts. By using two different donor‐acceptor copolymers, bothp‐andn‐type transistors are investigated. Temperature‐dependent current–voltage measurements from non‐treated, self‐assembled monolayer treated, and Al2O3treated Au source‐drain contact field‐effect transistors with varying channel lengths are carried out. The drain current versus drain voltage near zero gate voltage, which may be described by the thermionic emission model at temperatures above 150 K, allows the estimation of the Schottky barrier height (φB). The Al2O3contact‐treated transistors show more than 40% lowerφBcompared with the non‐treated contacts in thep‐type transistor. Similarly, an isoindigo‐based transistor, withn‐type transport, shows a reduction inφBwith Al2O3treated contacts suggesting that such ultrathin oxide layers provide a universal method for reducing the barrier height.more » « less
-
A recent ground-breaking experimental study [Lyons et al., Phys. Rev. X 14(1), 011017 (2024)] reports on measuring the temporal duration and the spatial extent of failed attempts to cross an activation barrier (i.e., “loops”) for a folding transition in a single molecule and for a Brownian particle trapped within a bistable potential. Within the model of diffusive dynamics, however, both of these quantities are, on average, exactly zero because of the recrossings of the barrier region boundary. That is, an observer endowed with infinite spatial and temporal resolution would find that finite loops do not exist (or, more precisely, form a set of measure zero). Here we develop a description of the experiment that takes the “fuzziness” of the boundaries caused by finite experimental resolution into account and show how the experimental uncertainty of localizing the point, in time and space, where the barrier is crossed leads to observable distributions of loop times and sizes. Although these distributions generally depend on the experimental resolution, this dependence, in certain cases, may amount to a simple resolution-dependent factor and, therefore, the experiments do probe inherent properties of barrier crossing dynamics.more » « less
An official website of the United States government

