Abstract The use of metal and semimetal van der Waals contacts for 2D semiconducting devices has led to remarkable device optimizations. In comparison with conventional thin-film metal deposition, a reduction in Fermi level pinning at the contact interface for van der Waals contacts results in, generally, lower contact resistances and higher mobilities. Van der Waals contacts also lead to Schottky barriers that follow the Schottky–Mott rule, allowing barrier estimates on material properties alone. In this study, we present a double Schottky barrier model and apply it to a barrier tunable all van der Waals transistor. In a molybdenum disulfide (MoS2) transistor with graphene and few-layer graphene contacts, we find that the model can be applied to extract Schottky barrier heights that agree with the Schottky–Mott rule from simple two-terminal current–voltage measurements at room temperature. Furthermore, we show tunability of the Schottky barrierin-situusing a regional contact gate. Our results highlight the utility of a basic back-to-back diode model in extracting device characteristics in all van der Waals transistors.
more »
« less
Reducing the Barrier Height in Organic Transistors
Abstract Reducing the Schottky barrier height and Fermi level de‐pinning in metal‐organic semiconductor contacts are crucial for enhancing the performance of organic transistors. The reduction of the Schottky barrier height in bottom‐contact top‐gate organic transistors is demonstrated by adding 1 nm thick atomic layer deposited Al2O3on the source and drain contacts. By using two different donor‐acceptor copolymers, bothp‐andn‐type transistors are investigated. Temperature‐dependent current–voltage measurements from non‐treated, self‐assembled monolayer treated, and Al2O3treated Au source‐drain contact field‐effect transistors with varying channel lengths are carried out. The drain current versus drain voltage near zero gate voltage, which may be described by the thermionic emission model at temperatures above 150 K, allows the estimation of the Schottky barrier height (φB). The Al2O3contact‐treated transistors show more than 40% lowerφBcompared with the non‐treated contacts in thep‐type transistor. Similarly, an isoindigo‐based transistor, withn‐type transport, shows a reduction inφBwith Al2O3treated contacts suggesting that such ultrathin oxide layers provide a universal method for reducing the barrier height.
more »
« less
- Award ID(s):
- 2324839
- PAR ID:
- 10582002
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Electronic Materials
- Volume:
- 11
- Issue:
- 4
- ISSN:
- 2199-160X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract 2D semiconductors such as monolayer molybdenum disulfide (MoS2) are promising material candidates for next‐generation nanoelectronics. However, there are fundamental challenges related to their metal–semiconductor (MS) contacts, which limit the performance potential for practical device applications. In this work, 2D monolayer hexagonal boron nitride (h‐BN) is exploited as an ultrathin decorating layer to form a metal–insulator–semiconductor (MIS) contact, and an innovative device architecture is designed as a platform to reveal a novel diode‐like selective enhancement of the carrier transport through the MIS contact. The contact resistance is significantly reduced when the electrons are transported from the semiconductor to the metal, but is barely affected when the electrons are transported oppositely. A concept of carrier collection barrier is proposed to interpret this intriguing phenomenon as well as a negative Schottky barrier height obtained from temperature‐dependent measurements, and the critical role of the collection barrier at the drain end is shown for the overall transistor performance.more » « less
-
Abstract Herein, the significant impact of the spin‐coated Cr2O3interface layer on the electrical properties and performance characteristics of Au/undoped‐InP (Au/InP) Schottky diodes (SD) is reported. The material characterization of spin‐coated Cr2O3films using a wide variety of analytical techniques, namely, atomic force microscopy, field emission scanning electron microscope, X‐ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy, indicate the formation of hexagonal phase, nanocrystalline, and stoichiometric Cr2O3on InP. Optical absorption measurements reveal a bandgap of ≈3.5 eV. In‐depth analyses and detailed measurements of current‐voltage (I–V) and capacitance‐voltage (C‐V) employed to assess the interface characteristics and electrical performance of the Au/InP (SD) versus Au/Cr2O3/InP (MIS) devices. Compared to SD, MIS revealed superior rectifying properties. Indicating that the Cr2O3interface layer significantly influences the barrier height (ΦBH) of SD, the estimated ΦBH(0.64 eV (I–V)/0.86 eV (C‐V)) is higher than that of SD (0.57 eV (I–V)/0.67 eV (C‐V)). In addition, Cheungs and Nordes' methods are used to obtain the ΦBH, ideality factor (n), and series resistance (RS). The equivalent ΦBHvalues obtained from current–voltage, Cheungs, and Nordes methods demonstrate stability and dependability in addition to validating their superior characteristics of MIS devices. The interface state density (NSS) for MIS is lower than the SD's, indicating that the effectiveness of Cr2O3layer significantly reduces NSS. Analyses to probe the mechanism demonstrate that, in SD and MIS, the Schottky emission controls the higher bias area, while the Poole‐Frenkel emission dominates the reverse conduction mechanism at the lower bias region. The present work convincingly demonstrates the potential application of the Cr2O3interfacial layer in delivering the enhanced performance and contributes to the progression of electrical devices for emerging electronics and energy‐related applications.more » « less
-
The effects of downstream plasma exposure with O 2 , N 2 or CF 4 discharges on Si-doped Ga 2 O 3 Schottky diode forward and reverse current-voltage characteristics were investigated. The samples were exposed to discharges with rf power of 50 W plasma at a pressure of 400 mTorr and a fixed treatment time of 1 min to simulate dielectric layer removal, photoresist ashing or surface cleaning steps. Schottky contacts were deposited through a shadow mask after exposure to avoid any changes to the surface. A Schottky barrier height of 1.1 eV was obtained for the reference sample without plasma treatment, with an ideality factor of 1.0. The diodes exposed to CF 4 showed a 0.25 V shift from the I–V of the reference sample due to a Schottky barrier height lowering around 14%. The diodes showed a decrease of Schottky barrier height of 2.5 and 6.5% with O 2 or N 2 treatments, respectively. The effect of plasma exposure on the ideality factor of diodes treated with these plasmas was minimal; 0.2% for O 2 and N 2 , 0.3% for CF 4 , respectively. The reverse leakage currents were 1.2, 2.2 and 4.8 μ A cm −2 for the diodes treated with O 2 , and CF 4 , and N 2 respectively. The effect of downstream plasma treatment on diode on-resistance and on-off ratio were also minimal. The changes observed are much less than caused by exposure to hydrogen-containing plasmas and indicate that downstream plasma stripping of films from Ga 2 O 3 during device processing is a relatively benign approach.more » « less
-
Contact engineering on monolayer layer (ML) semiconducting transition metal dichalcogenides (TMDs) is considered the most challenging problem towards using these materials as a transistor channel in future advanced technology nodes. The typically observed strong Femi level pinning induced in part by the reaction of the source/drain contact metal and the ML TMD frequently results in a large Schottky barrier height, which limits the electrical performance of ML TMD field-effect transistors (FETs). However, at a microscopic level, little is known about how interface defects or reaction sites impact the electrical performance of ML TMD FETs. In this work, we have performed statistically meaningful electrical measurements on at least 120 FETs combined with careful surface analysis to unveil contact resistance dependencies on the interface chemistry. In particular, we achieved a low contact resistance for ML MoS2 FETs with ultra-high vacuum (UHV, 3×10-11 mbar) deposited Ni contacts, ~500 ohm·μm, which is 5 times lower than the contact resistance achieved when deposited at high vacuum (HV, 3×10-6 mbar) conditions. These electrical results strongly correlate with our surface analysis observations. X-ray photoelectron spectroscopy (XPS) revealed significant bonding species between Ni and MoS2 under UHV conditions compared to HV. We also studied the Bi/MoS2 interface under UHV and HV deposition conditions. Different from the case of Ni, we do not observe a difference in contact resistance or interface chemistry between contacts deposited under UHV and HV. Finally, this article also explores the thermal stability and reliability of the two contact metals employed here.more » « less
An official website of the United States government
