Abstract Endophytes are microbes that live, for at least a portion of their life history, within plant tissues. Endophyte assemblages are often composed of a few abundant taxa and many infrequently observed, low-biomass taxa that are, in a word, rare. The ways in which most endophytes affect host phenotype are unknown; however, certain dominant endophytes can influence plants in ecologically meaningful ways—including by affecting growth and immune system functioning. In contrast, the effects of rare endophytes on their hosts have been unexplored, including how rare endophytes might interact with abundant endophytes to shape plant phenotype. Here, we manipulate both the suite of rare foliar endophytes (including both fungi and bacteria) and Alternaria fulva–a vertically transmitted and usually abundant fungus–within the fabaceous forb Astragalus lentiginosus. We report that rare, low-biomass endophytes affected host size and foliar %N, but only when the heritable fungal endophyte (A. fulva) was not present. A. fulva also reduced plant size and %N, but these deleterious effects on the host could be offset by a negative association we observed between this heritable fungus and a foliar pathogen. These results demonstrate how interactions among endophytic taxa determine the net effects on host plants and suggest that the myriad rare endophytes within plant leaves may be more than a collection of uninfluential, commensal organisms, but instead have meaningful ecological roles.
more »
« less
A suite of rare microbes interacts with a dominant, heritable, fungal endophyte to influence plant trait expression
Endophytes are microbes that live, for at least a portion of their life history, within plant tissues. Endophyte assemblages are often composed of a few abundant taxa and many infrequently observed, low-biomass taxa that are, in a word, rare. The ways in which most endophytes affect host phenotype are unknown; however, certain dominant endophytes can influence plants in ecologically meaningful ways—including by affecting growth and immune system functioning. In contrast, the effects of rare endophytes on their hosts have been unexplored, including how rare endophytes might interact with abundant endophytes to shape plant phenotype. Here, we manipulate both the suite of rare foliar endophytes (including both fungi and bacteria) and Alternaria fulva–a vertically transmitted and usually abundant fungus–within the fabaceous forb Astragalus lentiginosus. We report that rare, low-biomass endophytes affected host size and foliar %N, but only when the heritable fungal endophyte (A. fulva) was not present. A. fulva also reduced plant size and %N, but these deleterious effects on the host could be offset by a negative association we observed between this heritable fungus and a foliar pathogen. These results demonstrate how interactions among endophytic taxa determine the net effects on host plants and suggest that the myriad rare endophytes within plant leaves may be more than a collection of uninfluential, commensal organisms, but instead have meaningful ecological roles.
more »
« less
- Award ID(s):
- 1638793
- PAR ID:
- 10292007
- Date Published:
- Journal Name:
- The ISME journal
- ISSN:
- 1751-7370
- Page Range / eLocation ID:
- 1-16
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Foliar fungal endophytes are ubiquitous plant symbionts that can affect plant growth and reproduction via their roles in pathogen and stress tolerance, as well as plant hormonal signaling. Despite their importance, we have a limited understanding of how foliar fungal endophytes respond to varying environmental conditions such as nutrient inputs. The responses of foliar fungal endophyte communities to increased nutrient deposition may be mediated by the simultaneous effects on within‐host competition as well as the indirect impacts of altered host population size, plant productivity, and plant community diversity and composition. Here, we leveraged a 7‐yr experiment manipulating nitrogen, phosphorus, potassium, and micronutrients to investigate how nutrient‐induced changes to plant diversity, plant productivity, and plant community composition relate to changes in foliar fungal endophyte diversity and richness in a focal native grass host,Andropogon gerardii. We found limited evidence of direct effects of nutrients on endophyte diversity. Instead, the effects of nutrients on endophyte diversity appeared to be mediated by accumulation of plant litter and plant diversity loss. Specifically, nitrogen addition is associated with a 40% decrease in plant diversity and an 11% decrease in endophyte richness. Although nitrogen, phosphorus, and potassium addition increased aboveground live biomass and decreased relativeAndropogoncover, endophyte diversity did not covary with live plant biomass orAndropogoncover. Our results suggest that fungal endophyte diversity within this focal host is determined in part by the diversity of the surrounding plant community and its potential impact on immigrant propagules and dispersal dynamics. Our results suggest that elemental nutrients reduce endophyte diversity indirectly via impacts on the local plant community, not direct response to nutrient addition. Thus, the effects of global change drivers, such as nutrient deposition, on characteristics of host populations and the diversity of their local communities are important for predicting the response of symbiont communities in a changing global environment.more » « less
-
Litter decomposition rates are affected by a variety of abiotic and biotic factors, including the presence of fungal endophytes in host plant tissues. This review broadly analyzes the findings of 67 studies on the roles of foliar endophytes in litter decomposition, and their effects on decomposition rates. From 29 studies and 1 review, we compiled a comprehensive table of 710 leaf-associated fungal taxa, including the type of tissue these taxa were associated with and isolated from, whether they were reported as endo- or epiphytic, and whether they had reported saprophytic abilities. Aquatic (i.e., in-stream) decomposition studies of endophyte-affected litter were significantly under-represented in the search results (p < 0.0001). Indicator species analyses revealed that different groups of fungal endophytes were significantly associated with cool or tropical climates, as well as specific plant host genera (p < 0.05). Finally, we argue that host plant and endophyte interactions can significantly influence litter decomposition rates and should be considered when interpreting results from both terrestrial and in-stream litter decomposition experiments.more » « less
-
Abstract Microorganisms associated with plants can affect nutrient and water acquisition, plant defenses, and ecological interactions, with effects on plant growth that range from beneficial to antagonistic. In Glycine max (soybean), many studies have examined the soil microbiome and the legume–rhizobium relationship, but little is known about foliar endophytes, their effects on plant biomass and fitness, and how plants respond to their presence. To address these questions, we inoculated Glycine max with field-collected isolates of previously isolated, dominant strains of Methylobacterium and Colletotrichum in either sterile or non-sterile soil. We then used RNAseq to compare the transcriptomic responses of plants to single- and co-inoculation of endophytes. We found that all endophyte treatments increased soybean growth compared to control, but only in sterile soil. These results suggest context-dependency, with endophytes serving as facultative mutualists under stress or nutrient deprivation. Similarly, transcriptomic analyses revealed that soybean defense and stress responses depended on the interaction of endophytes; Methylobacterium elicited the strongest response but was modulated by the presence of Colletotrichum. Our findings highlight the environmentally dependent effects of co-existing endophytes within soybean leaves.more » « less
-
Summary Foliar fungal endophytes are one of the most diverse guilds of symbiotic fungi found in the photosynthetic tissues of every plant lineage, but it is unclear how plant environments and leaf resource availability shape their diversity.We explored correlations between leaf nutrient availability and endophyte diversity amongPinus muricataandVaccinium ovatumplants growing across a soil nutrient gradient spanning a series of coastal terraces in Mendocino, California.Endophyte richness decreased in plants with higher leaf nitrogen‐to‐phosphorus ratios for both host species, but increased with sodium, which may be toxic to fungi at high concentrations. Isolation frequency, a proxy of fungal biomass, was not significantly predicted by any of the same leaf constituents in the two plant species.We propose that stressed plants can exhibit both low foliar nutrients or high levels of toxic compounds, and that both of these stress responses predict endophyte species richness. Stressful conditions that limit growth of fungi may increase their diversity due to the suppression of otherwise dominating species. Differences between the host species in their endophyte communities may be explained by host specificity, leaf phenology, or microclimates.more » « less
An official website of the United States government

