Abstract Nearly all plants are colonized by fungal endophytes, and a growing body of work shows that both environment and host species shape plant-associated fungal communities. However, few studies place their work in a phylogenetic context to understand endophyte community assembly through an evolutionary lens. Here, we investigated environmental and host effects on root endophyte assemblages in coastal Louisiana marshes. We isolated and sequenced culturable fungal endophytes from roots of three to four dominant plant species from each of three sites of varying salinity. We assessed taxonomic diversity and composition as well as phylogenetic diversity (mean phylogenetic distance, MPD) and phylogenetic composition (based on MPD). When we analyzed plant hosts present across the entire gradient, we found that the effect of the environment on phylogenetic diversity (as measured by MPD) was host dependent and suggested phylogenetic clustering in some circumstances. We found that both environment and host plant affected taxonomic composition of fungal endophytes, but only host plant affected phylogenetic composition, suggesting different host plants selected for fungal taxa drawn from distinct phylogenetic clades, whereas environmental assemblages were drawn from similar clades. Our study demonstrates that including phylogenetic, as well as taxonomic, community metrics can provide a deeper understanding of community assembly in endophytes.
more »
« less
Do Foliar Endophytes Matter in Litter Decomposition?
Litter decomposition rates are affected by a variety of abiotic and biotic factors, including the presence of fungal endophytes in host plant tissues. This review broadly analyzes the findings of 67 studies on the roles of foliar endophytes in litter decomposition, and their effects on decomposition rates. From 29 studies and 1 review, we compiled a comprehensive table of 710 leaf-associated fungal taxa, including the type of tissue these taxa were associated with and isolated from, whether they were reported as endo- or epiphytic, and whether they had reported saprophytic abilities. Aquatic (i.e., in-stream) decomposition studies of endophyte-affected litter were significantly under-represented in the search results (p < 0.0001). Indicator species analyses revealed that different groups of fungal endophytes were significantly associated with cool or tropical climates, as well as specific plant host genera (p < 0.05). Finally, we argue that host plant and endophyte interactions can significantly influence litter decomposition rates and should be considered when interpreting results from both terrestrial and in-stream litter decomposition experiments.
more »
« less
- Award ID(s):
- 1656057
- PAR ID:
- 10142435
- Date Published:
- Journal Name:
- Microorganisms
- Volume:
- 8
- Issue:
- 3
- ISSN:
- 2076-2607
- Page Range / eLocation ID:
- 446
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nearly all plants are colonized by fungal endophytes, and a growing body of work shows that both environment and host species shape plant-associated fungal communities. However, few studies place their work in a phylogenetic context to understand endophyte community assembly through an evolutionary lens. Here we collected data to investigate environmental and host effects on root endophyte assemblages in coastal Louisiana marshes. We isolated and sequenced culturable fungal endophytes from roots of three-four dominant plant species from each of three sites of varying salinity. We provide data on abundance and taxonomy of the isolated fungal taxa as well as phylogenetic diversity (mean phylogenetic distance, MPD) and phylogenetic composition (based on MPD).more » « less
-
Diverse communities of fungal endophytes reside in plant tissues, where they affect and are affected by plant physiology and ecology. For these intimate interactions to form and persist, endophytes and their host plants engage in intricate systems of communication. The conversation between fungal endophytes and plant hosts ultimately dictates endophyte community composition and function and has cascading effects on plant health and plant interactions. In this review, we synthesize our current knowledge on the mechanisms and strategies of communication used by endophytic fungi and their plant hosts. We discuss the molecular mechanisms of communication that lead to organ specificity of endophytic communities and distinguish endophytes, pathogens, and saprotrophs. We conclude by offering emerging perspectives on the relevance of plant-endophyte communication to microbial community ecology and plant health and function.more » « less
-
null (Ed.)Endophytes are microbes that live, for at least a portion of their life history, within plant tissues. Endophyte assemblages are often composed of a few abundant taxa and many infrequently observed, low-biomass taxa that are, in a word, rare. The ways in which most endophytes affect host phenotype are unknown; however, certain dominant endophytes can influence plants in ecologically meaningful ways—including by affecting growth and immune system functioning. In contrast, the effects of rare endophytes on their hosts have been unexplored, including how rare endophytes might interact with abundant endophytes to shape plant phenotype. Here, we manipulate both the suite of rare foliar endophytes (including both fungi and bacteria) and Alternaria fulva–a vertically transmitted and usually abundant fungus–within the fabaceous forb Astragalus lentiginosus. We report that rare, low-biomass endophytes affected host size and foliar %N, but only when the heritable fungal endophyte (A. fulva) was not present. A. fulva also reduced plant size and %N, but these deleterious effects on the host could be offset by a negative association we observed between this heritable fungus and a foliar pathogen. These results demonstrate how interactions among endophytic taxa determine the net effects on host plants and suggest that the myriad rare endophytes within plant leaves may be more than a collection of uninfluential, commensal organisms, but instead have meaningful ecological roles.more » « less
-
Abstract Endophytes are microbes that live, for at least a portion of their life history, within plant tissues. Endophyte assemblages are often composed of a few abundant taxa and many infrequently observed, low-biomass taxa that are, in a word, rare. The ways in which most endophytes affect host phenotype are unknown; however, certain dominant endophytes can influence plants in ecologically meaningful ways—including by affecting growth and immune system functioning. In contrast, the effects of rare endophytes on their hosts have been unexplored, including how rare endophytes might interact with abundant endophytes to shape plant phenotype. Here, we manipulate both the suite of rare foliar endophytes (including both fungi and bacteria) and Alternaria fulva–a vertically transmitted and usually abundant fungus–within the fabaceous forb Astragalus lentiginosus. We report that rare, low-biomass endophytes affected host size and foliar %N, but only when the heritable fungal endophyte (A. fulva) was not present. A. fulva also reduced plant size and %N, but these deleterious effects on the host could be offset by a negative association we observed between this heritable fungus and a foliar pathogen. These results demonstrate how interactions among endophytic taxa determine the net effects on host plants and suggest that the myriad rare endophytes within plant leaves may be more than a collection of uninfluential, commensal organisms, but instead have meaningful ecological roles.more » « less
An official website of the United States government

