skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Schatten-q low-rank matrix perturbation analysis via perturbation projection error bound
Award ID(s):
1811868 1944904
PAR ID:
10292178
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Linear Algebra and its Applications
Volume:
630
Issue:
C
ISSN:
0024-3795
Page Range / eLocation ID:
225 to 240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Symmetry-adapted perturbation theory (SAPT) is an ab initio approach that directly computes noncovalent interaction energies in terms of electrostatics, exchange repulsion, induction/polarization, and London dispersion components. Due to its high computational scaling, routine applications of even the lowest order of SAPT are typically limited to a few hundred atoms. To address this limitation, we report here the addition of electrostatic embedding to the SAPT (EE-SAPT) and ISAPT (EE-ISAPT) methods. We illustrate the embedding scheme using water trimer as a prototype example. Then, we show that EE-SAPT/EE-ISAPT can be applied for efficiently and accurately computing noncovalent interactions in large systems, including solvated dimers and protein–ligand systems. In the latter application, particular care must be taken to properly handle the quantum mechanics/molecular mechanics boundary when it cuts covalent bonds. We investigate various schemes for handling charges near this boundary and demonstrate which are most effective in the context of charge-embedded SAPT. 
    more » « less
  2. The purpose of this White Paper is to review recent progress towards elucidating and evaluating string amplitudes, relating them to quantum field theory amplitudes, applying their predictions to string dualities, exploring their connection with gravitational physics, and deepening our under- standing of their mathematical structure. We also present a selection of targets for future research. 
    more » « less