skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1944904

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Summary In microbiome and genomic studies, the regression of compositional data has been a crucial tool for identifying microbial taxa or genes that are associated with clinical phenotypes. To account for the variation in sequencing depth, the classic log-contrast model is often used where read counts are normalized into compositions. However, zero read counts and the randomness in covariates remain critical issues. We introduce a surprisingly simple, interpretable and efficient method for the estimation of compositional data regression through the lens of a novel high-dimensional log-error-in-variable regression model. The proposed method provides corrections on sequencing data with possible overdispersion and simultaneously avoids any subjective imputation of zero read counts. We provide theoretical justifications with matching upper and lower bounds for the estimation error. The merit of the procedure is illustrated through real data analysis and simulation studies. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)