skip to main content


Title: Observational properties of puffy discs: radiative GRMHD spectra of mildly sub-Eddington accretion
ABSTRACT

Numerical general relativistic radiative magnetohydrodynamic simulations of accretion discs around a stellar-mass black hole with a luminosity above 0.5 of the Eddington value reveal their stratified, elevated vertical structure. We refer to these thermally stable numerical solutions as puffy discs. Above a dense and geometrically thin core of dimensionless thickness h/r ∼ 0.1, crudely resembling a classic thin accretion disc, a puffed-up, geometrically thick layer of lower density is formed. This puffy layer corresponds to h/r ∼ 1.0, with a very limited dependence of the dimensionless thickness on the mass accretion rate. We discuss the observational properties of puffy discs, particularly the geometrical obscuration of the inner disc by the elevated puffy region at higher observing inclinations, and collimation of the radiation along the accretion disc spin axis, which may explain the apparent super-Eddington luminosity of some X-ray objects. We also present synthetic spectra of puffy discs, and show that they are qualitatively similar to those of a Comptonized thin disc. We demonstrate that the existing xspec spectral fitting models provide good fits to synthetic observations of puffy discs, but cannot correctly recover the input black hole spin. The puffy region remains optically thick to scattering; in its spectral properties, the puffy disc roughly resembles that of a warm corona sandwiching the disc core. We suggest that puffy discs may correspond to X-ray binary systems of luminosities above 0.3 of the Eddington luminosity in the intermediate spectral states.

 
more » « less
Award ID(s):
1743747 1816420
NSF-PAR ID:
10367941
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
514
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 780-789
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Luminous active galactic nuclei and X-ray binaries often contain geometrically thin, radiatively cooled accretion discs. According to theory, these are – in many cases – initially highly misaligned with the black hole equator. In this work, we present the first general relativistic magnetohydrodynamic simulations of very thin (h/r ∼ 0.015–0.05) accretion discs around rapidly spinning (a ∼ 0.9) black holes and tilted by 45°–65°. We show that the inner regions of the discs with h/r ≲ 0.03 align with the black hole equator, though out to smaller radii than predicted by analytic work. The inner aligned and outer misaligned disc regions are separated by a sharp break in tilt angle accompanied by a sharp drop in density. We find that frame dragging by the spinning black hole overpowers the disc viscosity, which is self-consistently produced by magnetized turbulence, tearing the disc apart and forming a rapidly precessing inner sub-disc surrounded by a slowly precessing outer sub-disc. We find that the system produces a pair of relativistic jets for all initial tilt values. At small distances, the black hole launched jets precess rapidly together with the inner sub-disc, whereas at large distances they partially align with the outer sub-disc and precess more slowly. If the tearing radius can be modeled accurately in future work, emission model independent measurements of black hole spin based on precession-driven quasi-periodic oscillations may become possible. 
    more » « less
  2. ABSTRACT Type-C quasi-periodic oscillations (QPOs) are the low-frequency QPOs most commonly observed during the hard spectral state of X-ray binary systems. The leading model for these QPOs is the Lense-Thirring precession of a hot geometrically thick accretion flow that is misaligned with respect to the black hole spin axis. However, none of the work done to date has accounted for the effects of a surrounding geometrically thin disc on this precession, as would be the case in the truncated disc picture of the hard state. To address this, we perform a set of general relativistic magnetohydrodynamics simulations of truncated discs misaligned with the spin axes of their central black holes. Our results confirm that the inner-hot flow still undergoes precession, though at a rate that is only 5 per cent of what is predicted for an isolated precessing torus. We find that the exchange of angular momentum between the outer thin and the inner thick disc causes this slow-down in the precession rate and discuss its relevance to type-C QPOs. 
    more » « less
  3. ABSTRACT

    Many accreting black holes and neutron stars exhibit rapid variability in their X-ray light curves, termed quasi-periodic oscillations (QPOs). The most commonly observed type is the low-frequency (≲10 Hz), type-C QPO, while only a handful of sources exhibit high-frequency QPOs (≳60 Hz). The leading model for the type-C QPO is Lense-Thirring precession of a hot, geometrically thick accretion flow that is misaligned with the black hole’s spin axis. However, existing versions of this model have not taken into account the effects of a surrounding, geometrically thin disc on the precessing, inner, geometrically thick flow. In Bollimpalli et. al 2023, using a set of GRMHD simulations of tilted, truncated accretion discs, we confirmed that the outer thin disc slows down the precession rate of the precessing torus, which has direct observational implications for type-C QPOs. In this paper, we provide a detailed analysis of those simulations and compare them with an aligned truncated disc simulation. We find that the misalignment of the disc excites additional variability in the inner hot flow, which is absent in the comparable aligned-disc simulations. This suggests that the misalignment may be a crucial requirement for producing QPOs. We attribute this variability to global vertical oscillations of the inner torus at epicyclic frequencies corresponding to the transition radius. This explanation is consistent with current observations of higher frequency QPOs in black hole X-ray binary systems.

     
    more » « less
  4. Aims. The modelling of spectroscopic observations of tidal disruption events (TDEs) to date suggests that the newly formed accretion disks are mostly quasi-circular. In this work we study the transient event AT 2020zso, hosted by an active galactic nucleus (AGN; as inferred from narrow emission line diagnostics), with the aim of characterising the properties of its newly formed accretion flow. Methods. We classify AT 2020zso as a TDE based on the blackbody evolution inferred from UV/optical photometric observations and spectral line content and evolution. We identify transient, double-peaked Bowen (N  III ), He  I , He  II, and H α emission lines. We model medium-resolution optical spectroscopy of the He  II (after careful de-blending of the N  III contribution) and H α lines during the rise, peak, and early decline of the light curve using relativistic, elliptical accretion disk models. Results. We find that the spectral evolution before the peak can be explained by optical depth effects consistent with an outflowing, optically thick Eddington envelope. Around the peak, the envelope reaches its maximum extent (approximately 10 15 cm, or ∼3000–6000 gravitational radii for an inferred black hole mass of 5−10 × 10 5 M ⊙ ) and becomes optically thin. The H α and He  II emission lines at and after the peak can be reproduced with a highly inclined ( i  = 85 ± 5 degrees), highly elliptical ( e  = 0.97 ± 0.01), and relatively compact ( R in = several 100 R g and R out = several 1000 R g ) accretion disk. Conclusions. Overall, the line profiles suggest a highly elliptical geometry for the new accretion flow, consistent with theoretical expectations of newly formed TDE disks. We quantitatively confirm, for the first time, the high inclination nature of a Bowen (and X-ray dim) TDE, consistent with the unification picture of TDEs, where the inclination largely determines the observational appearance. Rapid line profile variations rule out the binary supermassive black hole hypothesis as the origin of the eccentricity; these results thus provide a direct link between a TDE in an AGN and the eccentric accretion disk. We illustrate for the first time how optical spectroscopy can be used to constrain the black hole spin, through (the lack of) disk precession signatures (changes in inferred inclination). We constrain the disk alignment timescale to > 15 days in AT2020zso, which rules out high black hole spin values ( a  < 0.8) for M BH  ∼ 10 6 M ⊙ and disk viscosity α  ≳ 0.1. 
    more » « less
  5. ABSTRACT

    The origin of the radio emission in radio-quiet quasars (RQQs) remains unclear. Radio emission may be produced by a scaled-down version of the relativistic jets observed in radio-loud (RL) AGN, an AGN-driven wind, the accretion disc corona, AGN photon-ionization of ambient gas (free–free emission), or star formation (SF). Here, we report a pilot study, part of a radio survey (‘PG-RQS’) aiming at exploring the spectral distributions of the 71 Palomar–Green (PG) RQQs: high angular resolution observations (∼50 mas) at 45 GHz (7 mm) with the Karl G. Jansky Very Large Array of 15 sources. Sub-mJy radio cores are detected in 13 sources on a typical scale of ∼100 pc, which excludes significant contribution from galaxy-scale SF. For 9 sources the 45-GHz luminosity is above the lower frequency (∼1–10 GHz) spectral extrapolation, indicating the emergence of an additional flatter-spectrum compact component at high frequencies. The X-ray luminosity and black hole (BH) mass, correlate more tightly with the 45-GHz luminosity than the 5-GHz. The 45 GHz-based radio-loudness increases with decreasing Eddington ratio and increasing BH mass MBH. These results suggest that the 45-GHz emission from PG RQQs nuclei originates from the innermost region of the core, probably from the accretion disc corona. Increasing contributions to 45-GHz emission from a jet at higher MBH and lower Eddington ratios and from a disc wind at large Eddington ratios are still consistent with our results. Future full radio spectral coverage of the sample will help us investigating the different physical mechanisms in place in RQQ cores.

     
    more » « less