skip to main content

Title: Sound vortex diffraction via topological charge in phase gradient metagratings
Wave fields with orbital angular momentum (OAM) have been widely investigated in metasurfaces. By engineering acoustic metasurfaces with phase gradient elements, phase twisting is commonly used to obtain acoustic OAM. However, it has limited ability to manipulate sound vortices, and a more powerful mechanism for sound vortex manipulation is strongly desired. Here, we propose the diffraction mechanism to manipulate sound vortices in a cylindrical waveguide with phase gradient metagratings (PGMs). A sound vortex diffraction law is theoretically revealed based on the generalized conservation principle of topological charge. This diffraction law can explain and predict the complicated diffraction phenomena of sound vortices, as confirmed by numerical simulations. To exemplify our findings, we designed and experimentally verified a PGM based on Helmholtz resonators that support asymmetric transmission of sound vortices. Our work provides previously unidentified opportunities for manipulating sound vortices, which can advance more versatile design for OAM-based devices.
Authors:
; ; ; ; ; ;
Award ID(s):
1641084
Publication Date:
NSF-PAR ID:
10292564
Journal Name:
Science Advances
Volume:
6
Issue:
40
Page Range or eLocation-ID:
eaba9876
ISSN:
2375-2548
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The orbital angular momentum (OAM) transformation of optical vortex is realized upon using aluminum metasurfaces with phase distributions derived from the caustic theory. The generated OAM transformation beam has the well-defined Bessel-like patterns with multiple designed topological charges from −1 to +2.5 including both the integer-order and fractional-order optical vortices along the propagation. The detailed OAM transformation process is observed in terms of the variations of both beam intensity and phase profiles. The dynamic distributions of OAM mode density in the transformation are further analyzed to illustrate the conservation of the total OAM. The demonstration of transforming OAM states arbitrarily for optical vortex beams will lead to many new applications in optical manipulation, quantum optics, and optical communication.

  2. Abstract

    The spatial variation of vector vortex beams with arbitrary polarization states and orbital angular momentum (OAM) values along the beam propagation is demonstrated by using plasmonic metasurfaces with the initial geometric phase profiles determined from the caustic theory. The vector vortex beam is produced by the superposition of deflected right- and left-handed circularly polarized component vortices with different helical phase charges, which are simultaneously generated off-axially by the single metasurface. Besides, the detailed evolution processes of intensity profile, polarization distribution and OAM value along the beam propagation distance is analyzed. The demonstrated arbitrary space-variant vector vortex beam will pave the way to many promising applications related to spin-to-orbital angular momentum conversion, spin-orbit hybrid entanglement, particle manipulation and transportation, and optical communication.

  3. Abstract Controlling and manipulating elastic/acoustic waves via artificially structured metamaterials, phononic crystals, and metasurfaces have gained an increasing research interest in the last decades. Unlike others, a metasurface is a single layer in the host medium with an array of subwavelength-scaled patterns introducing an abrupt phase shift in the wave propagation path. In this study, an elastic metasurface composed of an array of slender beam resonators is proposed to control the elastic wavefront of low-frequency flexural waves. The phase gradient based on Snell’s law is achieved by tailoring the thickness of thin beam resonators connecting two elastic host media. Through analytical and numerical models, the phase-modulated metasurfaces are designed and verified to accomplish three dynamic wave functions, namely, deflection, non-paraxial propagation, and focusing. An oblique incident wave is also demonstrated to show the versatility of the proposed design for focusing of wave energy incident from multiple directions. Experimentally measured focusing metasurface has nearly three times wave amplification at the designed focal point which validates the design and theoretical models. Furthermore, the focusing metasurface is exploited for low-frequency energy harvesting and the piezoelectric harvester is improved by almost nine times in terms of the harvested power output as compared to themore »baseline harvester on the pure plate without metasurface.« less
  4. Holographic acoustic lenses (HALs), also known as acoustic holograms, are used for generating unprecedented complex focused ultrasound (FU) fields. HALs store the phase profile of the desired wavefront, which is used to reconstruct the acoustic pressure field when illuminated by a single acoustic source. Nonlinear effects occur as the sound intensity increases, leading to distorted and asymmetric waveforms. Here, the k-space pseudospectral method is used to perform homogeneous three-dimensional nonlinear acoustic simulations with power law absorption. An in-depth analysis is performed to study the evolution of holographic-modulated FU fields produced by HALs as the excitation amplitude increases. It is shown that nonlinear waveform distortion significantly affects the reconstruction of the pressure pattern when compared to the linear condition. Diffraction and nonlinear effects result in an asymmetric waveform with distinct positive and negative pressure patterns at the target plane. Peak positive pressure distribution becomes more localized around the areas with the highest nonlinear distortion. The peak signal-to-distortion ratio (PSDR) at the target plane falls while the nonuniformity index (NUI) rises. As a result of harmonic generation, the heat deposition distribution becomes highly localized with a significant increase in the NUI. Nonlinear effects have also been shown to flatten the peak negativemore »pressure distribution while having minimal effect on the PSDR or NUI. However, nonlinear effects are shown to be critical for accurately predicting cavitation zones. Findings will pave the way for HALs implementation in high-intensity applications and prompt the incorporation of nonlinear acoustics into the notion of computer-generated holography.« less
  5. Vortex beams (VBs) carrying orbital angular moment (OAM) modes have been proven to be promising resources for increasing communication capacity. Although considerable attention has been paid on metasurface-based VB generators due to the unprecedented advantages of metasurface, most applications are usually limited at a single band with a fixed OAM mode. In this work, an emerging dual-band reflection-type coding metasurface is proposed to mitigate these issues by newly engineered meta-atoms, which could achieve independent 2-bit phase modulations at two frequency bands. The proposed coding metasurface could efficiently realize and fully control dual-band VBs carrying frequency selective OAM modes under the linearly polarized incidence. As the first illustrative example, a dual-band VB generator with normal beam direction is fabricated and characterized at two widely used communication bands (Ku and Ka bands). Moreover, by encoding proper coding sequences, versatile beams carrying frequency selective OAM modes can be achieved. Therefore, by adding a gradient phase sequence to the first VB generator, the second one is designed to steer the generated beams to a preset direction, which could enable diverse scenarios. The measurement results of both VB generators agree very well with the numerical ones, validating the full control capability of the proposed approach.