skip to main content

Title: The Magellan M2FS Spectroscopic Survey of High-redshift Galaxies: A Sample of 260 Ly α Emitters at Redshift z ≈ 5.7
; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this

    The Planck list of high-redshift source candidates (the PHz catalogue) contains 2151 peaks in the cosmic infrared background, unresolved by Planck’s 5 arcmin beam. Follow-up spectroscopic observations have revealed that some of these objects are $z\, {\approx }\, 2$ protoclusters and strong gravitational lenses but an unbiased survey has not yet been carried out. To this end, we have used archival Herschel-SPIRE observations to study a uniformly selected sample of 187 PHz sources. In contrast with follow-up studies that were biased towards bright, compact sources, we find that only one of our PHz sources is a bright gravitationally lensed galaxy (peak flux ${\gtrsim }\, 300$ mJy), indicating that such objects are rarer in the PHz catalogue than previously believed (<1 per cent). The majority of our PHz sources consist of many red, star-forming galaxies, demonstrating that typical PHz sources are candidate protoclusters. However, our new PHz sources are significantly less bright than found in previous studies and differ in colour, suggesting possible differences in redshift and star formation rate. None the less, 40 of our PHz sources contain ${\gt }\, 3\, \sigma$ galaxy overdensities, comparable to the fraction of ${\gt }\, 3\, \sigma$ overdensities found in earlier biased studies. We additionally use amore »machine-learning approach to identify less extreme (peak flux ${\sim }\, 100$ mJy) gravitationally lensed galaxies among Herschel-SPIRE observations of PHz sources, finding a total of seven candidates in our unbiased sample, and 13 amongst previous biased samples. Our new uniformly selected catalogues of ${\gt }\, 3\, \sigma$ candidate protoclusters and strong gravitational lenses provide interesting targets for follow up with higher resolution facilities, such as ALMA and JWST.

    « less
  2. ABSTRACT We introduce a probabilistic approach to select 6 ≤ $z$ ≤ 8 quasar candidates for spectroscopic follow-up, which is based on density estimation in the high-dimensional space inhabited by the optical and near-infrared photometry. Densities are modelled as Gaussian mixtures with principled accounting of errors using the extreme deconvolution (XD) technique, generalizing an approach successfully used to select lower redshift ($z$ ≤ 3) quasars. We train the probability density of contaminants on 1902 071 7-d flux measurements from the 1076 deg2 overlapping area from the Dark Energy Camera Legacy Survey (DECaLS) ($z$), VIKING (YJHKs), and unWISE (W1W2) imaging surveys, after requiring they dropout of DECaLS g and r, whereas the distribution of high-$z$ quasars are trained on synthetic model photometry. Extensive simulations based on these density distributions and current estimates of the quasar luminosity function indicate that this method achieves a completeness of $\ge 56{{\ \rm per\ cent}}$ and an efficiency of $\ge 5{{\ \rm per\ cent}}$ for selecting quasars at 6 < $z$ < 8 with JAB < 21.5. Among the classified sources are 8 known 6 < $z$ < 7 quasars, of which 2/8 are selected suggesting a completeness $\simeq 25{{\ \rm per\ cent}}$, whereas classifying the 6 knownmore »(JAB < 21.5) quasars at $z$ > 7 from the entire sky, we select 5/6 or a completeness of $\simeq 80{{\ \rm per\ cent}}$. The failure to select the majority of 6 < $z$ < 7 quasars arises because our quasar density model is based on an empirical quasar spectral energy distribution model that underestimates the scatter in the distribution of fluxes. This new approach to quasar selection paves the way for efficient spectroscopic follow-up of Euclid quasar candidates with ground-based telescopes and James Webb Space Telescope.« less

    We present spectroscopic measurements for 71 galaxies associated with 62 of the brightest high-redshift submillimetre sources from the Southern fields of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS), while targeting 85 sources which resolved into 142. We have obtained robust redshift measurements for all sources using the 12-m Array and an efficient tuning of ALMA to optimize its use as a redshift hunter, with 73 per cent of the sources having a robust redshift identification. Nine of these redshift identifications also rely on observations from the Atacama Compact Array. The spectroscopic redshifts span a range 1.41 < z < 4.53 with a mean value of 2.75, and the CO emission line full-width at half-maxima range between $\rm 110\, km\, s^{-1} \lt FWHM \lt 1290\, km\, s^{-1}$ with a mean value of ∼500 km s−1, in line with other high-z samples. The derived CO(1-0) luminosity is significantly elevated relative to line-width to CO(1-0) luminosity scaling relation, which is suggestive of lensing magnification across our sources. In fact, the distribution of magnification factors inferred from the CO equivalent widths is consistent with expectations from galaxy–galaxy lensing models, though there is a hint of an excess at large magnifications that may be attributable to themore »additional lensing optical depth from galaxy groups or clusters.

    « less