skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Views on ethical issues in research labs: A university-wide survey
In this article, we summarize the key findings of an exploratory study in which students and faculty completed a survey that sought to identify the most important ethical issues in STEM fields, how often these issues are discussed in research groups, and how often these ethical issues come up in the daily practice of research. Participants answered a series of open-ended and Likert-scale questions to provide a detailed look at the current ethical landscape at a private research university in the Midwest. The survey also looked at potential differences between faculty and undergraduate and graduate students’ perceptions in answering these questions. The results indicate that while all community members tended to view issues that can be classified as research misconduct as the most important activities to avoid in STEM-related research, the level of discussion and actual witnessing of these practices was relatively low. The study points to a consensus among students and faculty about the important ethical issues in STEM and the need for more discussion and attention to be paid to communication, collaboration, and interpersonal relationships in the research environment.  more » « less
Award ID(s):
1635661
PAR ID:
10292717
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Accountability in Research
ISSN:
0898-9621
Page Range / eLocation ID:
1 to 24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It is emphasized in national legislation, such as the America COMPETES Act and the more recent CHIPS and Science Act, that research integrity is considered essential to the competitiveness and innovation of the U.S. economy. Various stakeholders, particularly research universities, have been developing interventions and programs to foster an ethical culture in STEM (science, technology, engineering, and mathematics) research and practice among faculty and students. Dominant approaches to research ethics education have historically been shaped by biomedical ethics and the broader ethics of science, placing significant emphasis on misconduct of individual researchers, including the falsification, fabrication, and plagiarism (FFP) of research results. Although these approaches have contributed to promoting ethical conduct among individual researchers, we argue that they still face several challenges. Most notably, due to their narrow scope, traditional research ethics education approaches fail to consider the role of disciplinary cultures in shaping research ethics issues. Additionally, they do not leverage the agency of STEM researchers to identify and address these issues or to generate scalable and sustainable impacts within institutions. To address these issues, this paper introduces the IREI (Innovative Research and Ethical Impact) project, which provides an institutional transformation approach to research ethics education for faculty in STEM fields. This approach aims to transform the institutional culture for ethical STEM research by helping faculty develop and enhance their capacity to identify and address ethical issues in their daily work, while generating scalable and sustainable impacts by leveraging their social networks. More specifically, this paper introduces the curriculum design for a professional development workshop for STEM faculty, which is a key component of the IREI project. This faculty development workshop begins by broadening the understanding of ethics, shifting the focus from aligning the conduct of individual researchers with predetermined ethical principles to the impacts of their actions on the lives of others, as well as on the broader environment and society. This expanded definition is used for two main reasons. First, it emphasizes that it is the actions themselves that ultimately affect others, rather than merely a researcher’s intent or the ethical justification of their behavior. Second, it highlights that future potential impacts are as crucial in research as present, actual impacts—if not more so—since research is intrinsically novel and often future-oriented. Based on this definition, researchers are introduced to steps in the research process, from formulating questions to disseminating results. Participants are then provided with reflective tools and hands-on activities to enhance their ethical sensitivity and expertise throughout the entire research process. This enables them to identify (1) who is affected by their research at various stages and how they are impacted, and (2) strategies to maximize positive effects while minimizing any negative consequences. Finally, faculty are provided with mentoring opportunities to incorporate these reflective insights into broader impacts statements of their own research proposals and projects. Given that these statements directly pertain to their research, we hope that participants will view this workshop as both significant and relevant, as they have a natural interest in making their statements as clear and compelling as possible. 
    more » « less
  2. Ethics and social responsibility are often viewed as key areas of concern for many engineering educators and professional engineers. Thus, it is important to consider how students and professionals understand and navigate ethical issues, explore how such perceptions and abilities change over time, and investigate if certain types of interventions and experiences (e.g., coursework, training, service activities, etc.) impact individual participants. The breadth of engineering as a profession also raises questions about how ethics and social responsibility are understood across a wide range of disciplines, subfields, and industry sectors. Recognizing a need for more empirical research to address such questions, our research team carried out a five year, longitudinal, mixed-methods study to explore students’ perceptions of ethics and social responsibility. This study relied on repeated use of quantitative measures related to ethics, along with qualitative interviews to explore how students’ perceptions of these issues change across time, between institutions, and in response to participation in certain experiences. Additionally, we are now initiating a follow-on study where we will collect survey and interview data from our previous participants now that most of them are in full-time job roles and/or pursuing graduate degrees, as well as from a new group of early career engineers to enlarge our sample. In this paper, we first give an overview of key research findings from our ongoing research that have been published or are under review. The second major part of this paper delves into some specific theoretical and methodological questions and challenges associated with our research. This paper will likely be of interest to educators and researchers who are involved with developing and/or evaluating ethical capabilities among engineering students. 
    more » « less
  3. Prior research suggests various reasons for the paucity of American Indian/Alaska Native (AI/AN) people in engineering fields, including academic deficiencies, lack of role models, and minimal financial support to pursue a college education. One potential reason that has yet to be explored relates to the cultural and spiritual barriers that could deter AI/AN people from feeling a sense of belonging in engineering fields. These barriers may create obstacles to progressing through engineering career pathways. Our research investigates the range and variation of cultural/spiritual/ethical issues that may be affecting AI/AN people’s success in engineering and other science, technology, and mathematics fields. The work reported here focuses on findings from students and professionals in engineering fields specifically. The study seeks to answer two research questions: (1) What ethical issues do AI/AN students and professionals in engineering fields experience, and how do they navigate these issues?, and (2) Do ethical issues impede AI/AN students from pursuing engineering careers, and if so, how? We distributed an online survey to AI/AN college students (undergraduate and graduate) and professionals in STEM fields, including engineers, in the western United States region. Our results indicate strong connections to AI/AN culture by the participants in the study as well as some cultural, ethical, and/or spiritual barriers that exist for AI/AN individuals in the engineering field. The AI/AN professionals had less concerns with respect to activities that may conflict with AI/AN cultural customs compared to the students, which may be a result of the professionals having gained experiences that allow them to navigate these situations. Overall, our research offers insights for policy and practice within higher education institutions with engineering majors and/or graduate programs and organizations that employ engineering professionals. 
    more » « less
  4. Qin Zhu, PhD Assistant Professor (Ed.)
    Prior research suggests various reasons for the paucity of American Indian/Alaska Native (AI/AN) people in engineering fields, including academic deficiencies, lack of role models, and minimal financial support to pursue a college education. One potential reason that has yet to be explored relates to the cultural and spiritual barriers that could deter AI/AN people from feeling a sense of belonging in engineering fields. These barriers may create obstacles to progressing through engineering career pathways. Our research investigates the range and variation of cultural/spiritual/ethical issues that may be affecting AI/AN people’s success in engineering and other science, technology, and mathematics fields. The work reported here focuses on findings from students and professionals in engineering fields specifically. The study seeks to answer two research questions: (1) What ethical issues do AI/AN students and professionals in engineering fields experience, and how do they navigate these issues?, and (2) Do ethical issues impede AI/AN students from pursuing engineering careers, and if so, how? We distributed an online survey to AI/AN college students (undergraduate and graduate) and professionals in STEM fields, including engineers, in the western United States region. Our results indicate strong connections to AI/AN culture by the participants in the study as well as some cultural, ethical, and/or spiritual barriers that exist for AI/AN individuals in the engineering field. The AI/AN professionals had less concerns with respect to activities that may conflict with AI/AN cultural customs compared to the students, which may be a result of the professionals having gained experiences that allow them to navigate these situations. Overall, our research offers insights for policy and practice within higher education institutions with engineering majors and/or graduate programs and organizations that employ engineering professionals 
    more » « less
  5. This work-in-progress study aims to qualitatively examine undergraduate students’ understanding of ethical dilemmas in aerospace engineering. Macroethics is particularly relevant within the aerospace industry as engineers are often asked to grapple with multi-faceted issues such as sustainable aviation, space colonization, or the military industrial complex. Macroethical education, the teaching of collective social responsibility within the engineering profession and societal decisions about technology, is traditionally left out of undergraduate engineering curricula. This lack of macroethics material leaves students underprepared to address the broader impacts of their discipline on society. Including macroethical content in the classroom helps novice engineers better understand the real implications of their work on humanity. Previous literature has explored how specific pedagogical interventions impact students’ decision-making, but few studies delve into undergraduate students’ awareness and perceptions of the issues themselves. Thus, it is essential to examine how students’ perceptions of macroethical dilemmas are evolving in order for instructors to effectively meet the needs of their students. This study addresses the need to better understand student awareness of macroethical issues by extending upon previous research to qualitatively analyze responses from an iteration of a macroethical perceptions survey (n = 81) administered to undergraduate aerospace engineers at a large, Midwestern, predominantly white, research-intensive, public university. Our prior work has been used to develop and iterate upon a mixed-methods survey that seeks to understand students’ perceptions of ethical issues within the aerospace discipline. In the most recent version of our survey instrument, thirty-one Likert-scale questions asked about students’ feelings towards the current state of aerospace engineering and their ideal state of the aerospace field. Within this survey, eight Likert-scale prompts are followed by open-ended questions asking students to explain their answers in-depth. For instance, if students agreed or strongly agreed with the statement ‘It is important to me to use my career as an aerospace engineer to make a positive difference in the world.’, a follow-up item asked students to explain what positive differences they would like to make in the world. Student responses were analyzed using a combination of a deductive and inductive thematic analyses. Researchers first applied an a priori coding scheme onto responses that was initially developed using constructivist grounded theory, then used inductive analysis to account for new themes that naturally emerged within the data. The analysis delved deeper into students’ moral engagement towards ethical issues, their perceptions of who is affected by these dilemmas, and how they have seen these dilemmas addressed in both academic and professional settings. Preliminary results from the study identified that students have a wide spectrum of awareness of relevant issues and express varying levels of acceptance about the state of aerospace engineering.While some students exhibited signs of inattentiveness, or limited ability to consider viewpoints beyond their own, others demonstrated abilities to see multiple perspectives and critically analyze systems of power that influence how macroethical issues are addressed. Similarly, students also demonstrated varying degrees of acceptance, some demonstrating signs of apathy or moral disengagement regarding the field of aerospace engineering, others indicating signs of conflict, or a heightened state of stress about opposing ideals and values, and a final group of students indicating a desire to challenge or reform the existing culture of the discipline. These emergent themes will be used to inform teaching practices concerning engineering ethics education, refine future iterations of macroethics lesson content and survey instruments, and further incentivize the integration of macroethical content throughout aerospace engineering curricula. 
    more » « less