skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamics of Deep Recirculation Cells Offshore of the Deep Western Boundary Current in the Subtropical North Atlantic (15°–30°N)
Abstract The dynamics of the deep recirculation offshore of the deep western boundary current (DWBC) between 15° and 30°N within the upper North Atlantic Deep Water layer (1000 ≤ z ≤ 3000 m) is investigated with two different eddy-resolving numerical simulations. Despite some differences in the recirculation cells, our assessment of the modeled deep isopycnal circulation patterns (36.77 ≤ σ 2 ≤ 37.06 kg m −3 ) shows that both simulations predict the DWBC flowing southward along the continental slope, while the so-called Abaco Gyre and two additional cyclonic cells recirculate waters northward in the interior. These cells are a few degrees wide, located along the DWBC path, and characterized by potential vorticity (PV) changes occurring along their mean streamlines. The analysis of the mean PV budget reveals that these changes result from the action of eddy forcing that tends to erode the PV horizontal gradients. The lack of a major upper-ocean boundary current within the study region, and the fact that the strongest eddy forcing is constrained within a few hundreds of kilometers of the western boundary, suggest that the DWBC is the primary source of eddy forcing. Finally, the eddies responsible for forcing the recirculation have dominant time scales between 100 and 300 days, which correspond to the primary observed variability scales of the DWBC transport at 26.5°N.  more » « less
Award ID(s):
1926008
PAR ID:
10292721
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
51
Issue:
1
ISSN:
0022-3670
Page Range / eLocation ID:
131 to 145
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The mean North Atlantic Deep Water (NADW, 1000 < z < 5000 m) circulation and deep western boundary current (DWBC) variability offshore of Abaco, Bahamas, at 26.5°N are investigated from nearly two decades of velocity and hydrographic observations, and outputs from a 30-yr-long eddy-resolving global simulation. Observations at 26.5°N and Argo-derived geostrophic velocities show the presence of a mean Abaco Gyre spanning the NADW layer, consisting of a closed cyclonic circulation between approximately 24° and 30°N and 72° and 77°W. The southward-flowing portion of this gyre (the DWBC) is constrained to within ~150 km of the western boundary with a mean transport of ~30 Sv (1 Sv ≡ 10 6 m 3 s −1 ). Offshore of the DWBC, the data show a consistent northward recirculation with net transports varying from 6.5 to 16 Sv. Current meter records spanning 2008–17 supported by the numerical simulation indicate that the DWBC transport variability is dominated by two distinct types of fluctuations: 1) periods of 250–280 days that occur regularly throughout the time series and 2) energetic oscillations with periods between 400 and 700 days that occur sporadically every 5–6 years and force the DWBC to meander far offshore for several months. The shorter-period variations are related to DWBC meandering caused by eddies propagating southward along the continental slope at 24°–30°N, while the longer-period oscillations appear to be related to large anticyclonic eddies that slowly propagate northwestward counter to the DWBC flow between ~20° and 26.5°N. Observational and theoretical evidence suggest that these two types of variability might be generated, respectively, by DWBC instability processes and Rossby waves reflecting from the western boundary. 
    more » « less
  2. null (Ed.)
    Abstract The southward-flowing deep limb of the Atlantic meridional overturning circulation is composed of both the deep western boundary current (DWBC) and interior pathways. The latter are fed by “leakiness” from the DWBC in the Newfoundland Basin. However, the cause of this leakiness has not yet been explored mechanistically. Here the statistics and dynamics of the DWBC leakiness in the Newfoundland Basin are explored using two float datasets and a high-resolution numerical model. The float leakiness around Flemish Cap is found to be concentrated in several areas (hot spots) that are collocated with bathymetric curvature and steepening. Numerical particle advection experiments reveal that the Lagrangian mean velocity is offshore at these hot spots, while Lagrangian variability is minimal locally. Furthermore, model Eulerian mean streamlines separate from the DWBC to the interior at the leakiness hot spots. This suggests that the leakiness of Lagrangian particles is primarily accomplished by an Eulerian mean flow across isobaths, though eddies serve to transfer around 50% of the Lagrangian particles to the leakiness hot spots via chaotic advection, and rectified eddy transport accounts for around 50% of the offshore flow along the southern face of Flemish Cap. Analysis of the model’s energy and potential vorticity budgets suggests that the flow is baroclinically unstable after separation, but that the resulting eddies induce modest modifications of the mean potential vorticity along streamlines. These results suggest that mean uncompensated leakiness occurs mostly through inertial separation, for which a scaling analysis is presented. Implications for leakiness of other major boundary current systems are discussed. 
    more » « less
  3. The Greenland Deep Western Boundary Current (GDWBC) mooring array is part of the Overturning in the Subpolar North Atlantic Project (OSNAP). The mooring array consists of four moorings instrumented with SeaBird 37 MicroCATs and Nortek Aquadopp Current Meters with the goal of 1) better defining the range of DWBC transport variability up to interannual time scales from continuous multi-year time series of velocity, temperature, and salinity, 2) identifying the causes of DWBC transport and water mass variability on multiple time scales, including connections to the dense overflows upstream, and 3) assessing DWBC continuity and connectivity around Cape Farewell and to the western boundary of the Subpolar North Atlantic. These moorings were deployed August 2020 to July 2022. 
    more » « less
  4. null (Ed.)
    Abstract The structure, transport, and seasonal variability of the West Greenland boundary current system near Cape Farewell are investigated using a high-resolution mooring array deployed from 2014 to 2018. The boundary current system is comprised of three components: the West Greenland Coastal Current, which advects cold and fresh Upper Polar Water (UPW); the West Greenland Current, which transports warm and salty Irminger Water (IW) along the upper slope and UPW at the surface; and the Deep Western Boundary Current, which advects dense overflow waters. Labrador Sea Water (LSW) is prevalent at the seaward side of the array within an offshore recirculation gyre and at the base of the West Greenland Current. The 4-yr mean transport of the full boundary current system is 31.1 ± 7.4 Sv (1 Sv ≡ 10 6 m 3 s −1 ), with no clear seasonal signal. However, the individual water mass components exhibit seasonal cycles in hydrographic properties and transport. LSW penetrates the boundary current locally, through entrainment/mixing from the adjacent recirculation gyre, and also enters the current upstream in the Irminger Sea. IW is modified through air–sea interaction during winter along the length of its trajectory around the Irminger Sea, which converts some of the water to LSW. This, together with the seasonal increase in LSW entering the current, results in an anticorrelation in transport between these two water masses. The seasonality in UPW transport can be explained by remote wind forcing and subsequent adjustment via coastal trapped waves. Our results provide the first quantitatively robust observational description of the boundary current in the eastern Labrador Sea. 
    more » « less
  5. Abstract The Deep Western Boundary Current (DWBC) – the primary component of the lower limb of the Atlantic Meridional Overturning Circulation – flows along the eastern flank of Greenland from a combination of Denmark Strait Overflow Water and Iceland Scotland Overflow Water. The Overturning in the Subpolar North Atlantic Program (OSNAP) has continuously measured the DWBC since 2014 using current meters, temperature/salinity sensors, and acoustic doppler current profilers. This mooring array located near Cape Farewell also incorporates data from the Ocean Observatories Initiative’s Global Irminger Sea Array to create the longest continuous observations of the DWBC closest to where Iceland Scotland Overflow Water and Denmark Strait Overflow water first merge. This study reveals that the DWBC has decreased by 26% over the first six years of OSNAP observations primarily due to a thinning of the traditionally defined DWBC layer (σθ > 27.8 kg m-3) due to a known freshening signal moving through the subpolar region. Despite this decrease, the Atlantic Meridional Overturning Circulation as calculated by OSNAP has remained relatively steady over the same period. Ultimately, the reason for this difference is due to the methods used to define these two circulations. Finding such notably different trends for two seemingly dependent circulations raises the question of how to best define these transports. 
    more » « less