skip to main content


Title: Coastal Ocean Data Analysis Product in North America (CODAP-NA) – an internally consistent data product for discrete inorganic carbon, oxygen, and nutrients on the North American ocean margins
Abstract. Internally consistent, quality-controlled (QC) data products play animportant role in promoting regional-to-global research efforts tounderstand societal vulnerabilities to ocean acidification (OA). However,there are currently no such data products for the coastal ocean, where mostof the OA-susceptible commercial and recreational fisheries and aquacultureindustries are located. In this collaborative effort, we compiled, quality-controlled, and synthesized 2 decades of discrete measurements ofinorganic carbon system parameters, oxygen, and nutrient chemistry data fromthe North American continental shelves to generate a data product calledthe Coastal Ocean Data Analysis Product in North America (CODAP-NA). Thereare few deep-water (> 1500 m) sampling locations in the currentdata product. As a result, crossover analyses, which rely on comparisonsbetween measurements on different cruises in the stable deep ocean, couldnot form the basis for cruise-to-cruise adjustments. For this reason, carewas taken in the selection of data sets to include in this initial releaseof CODAP-NA, and only data sets from laboratories with known qualityassurance practices were included. New consistency checks and outlierdetections were used to QC the data. Future releases of this CODAP-NAproduct will use this core data product as the basis for cruise-to-cruisecomparisons. We worked closely with the investigators who collected andmeasured these data during the QC process. This version (v2021) of theCODAP-NA is comprised of 3391 oceanographic profiles from 61 researchcruises covering all continental shelves of North America, from Alaska toMexico in the west and from Canada to the Caribbean in the east. Data for 14variables (temperature; salinity; dissolved oxygen content; dissolvedinorganic carbon content; total alkalinity; pH on total scale; carbonateion content; fugacity of carbon dioxide; and substance contents of silicate,phosphate, nitrate, nitrite, nitrate plus nitrite, and ammonium) have beensubjected to extensive QC. CODAP-NA is available as a merged data product(Excel, CSV, MATLAB, and NetCDF; https://doi.org/10.25921/531n-c230,https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0219960.html, last access: 15 May 2021)(Jiang et al., 2021a). The original cruise data have also been updated withdata providers' consent and summarized in a table with links to NOAA'sNational Centers for Environmental Information (NCEI) archives(https://www.ncei.noaa.gov/access/ocean-acidification-data-stewardship-oads/synthesis/NAcruises.html).  more » « less
Award ID(s):
2023500
PAR ID:
10293019
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Date Published:
Journal Name:
Earth System Science Data
Volume:
13
Issue:
6
ISSN:
1866-3516
Page Range / eLocation ID:
2777 to 2799
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The Global Ocean Data Analysis Project (GLODAP) is asynthesis effort providing regular compilations of surface-to-bottom oceanbiogeochemical bottle data, with an emphasis on seawater inorganic carbonchemistry and related variables determined through chemical analysis ofseawater samples. GLODAPv2.2022 is an update of the previous version,GLODAPv2.2021 (Lauvset et al., 2021). The major changes are as follows: datafrom 96 new cruises were added, data coverage was extended until 2021, andfor the first time we performed secondary quality control on all sulfurhexafluoride (SF6) data. In addition, a number of changes were made todata included in GLODAPv2.2021. These changes affect specifically theSF6 data, which are now subjected to secondary quality control, andcarbon data measured on board the RV Knorr in the Indian Ocean in 1994–1995 whichare now adjusted using certified reference material (CRM) measurements made at the time. GLODAPv2.2022includes measurements from almost 1.4 million water samples from the globaloceans collected on 1085 cruises. The data for the now 13 GLODAP corevariables (salinity, oxygen, nitrate, silicate, phosphate, dissolvedinorganic carbon, total alkalinity, pH, chlorofluorocarbon-11 (CFC-11), CFC-12, CFC-113, CCl4,and SF6) have undergone extensive quality control with a focus onsystematic evaluation of bias. The data are available in two formats: (i) assubmitted by the data originator but converted to World Ocean CirculationExperiment (WOCE) exchange format and (ii) as a merged data product withadjustments applied to minimize bias. For the present annual update,adjustments for the 96 new cruises were derived by comparing those data withthe data from the 989 quality-controlled cruises in the GLODAPv2.2021 dataproduct using crossover analysis. SF6 data from all cruises wereevaluated by comparison with CFC-12 data measured on the same cruises. Fornutrients and ocean carbon dioxide (CO2) chemistry comparisons toestimates based on empirical algorithms provided additional context foradjustment decisions. The adjustments that we applied are intended to removepotential biases from errors related to measurement, calibration, and datahandling practices without removing known or likely time trends orvariations in the variables evaluated. The compiled and adjusted dataproduct is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate,4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % inthe halogenated transient tracers. The other variables included in thecompilation, such as isotopic tracers and discrete CO2 fugacity(fCO2), were not subjected to bias comparison or adjustments. The original data, their documentation, and DOI codes are available at theOcean Carbon and Acidification Data System of NOAA NCEI (https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/GLODAPv2_2022/, last access: 15 August 2022). This site also provides access to themerged data product, which is provided as a single global file and as fourregional ones – the Arctic, Atlantic, Indian, and Pacific oceans –under https://doi.org/10.25921/1f4w-0t92 (Lauvset et al.,2022). These bias-adjusted product files also include significant ancillaryand approximated data, which were obtained by interpolation of, orcalculation from, measured data. This living data update documents theGLODAPv2.2022 methods and provides a broad overview of the secondary qualitycontrol procedures and results.

     
    more » « less
  2. Abstract. The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface to bottom ocean biogeochemical bottle data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2023 is an update of the previous version, GLODAPv2.2022 (Lauvset et al., 2022). The major changes are as follows: data from 23 new cruises were added. In addition, a number of changes were made to the data included in GLODAPv2.2022. GLODAPv2.2023 includes measurements from more than 1.4 million water samples from the global oceans collected on 1108 cruises. The data for the now 13 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, chlorofluorocarbon-11 (CFC-11), CFC-12, CFC-113, CCl4, and SF6) have undergone extensive quality control with a focus on the systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but converted to World Ocean Circulation Experiment (WOCE) exchange format and (ii) as a merged data product with adjustments applied to minimize bias. For the present annual update, adjustments for the 23 new cruises were derived by comparing those data with the data from the 1085 quality-controlled cruises in the GLODAPv2.2022 data product using crossover analysis. SF6 data from all cruises were evaluated by comparison with CFC-12 data measured on the same cruises. For nutrients and ocean carbon dioxide (CO2), chemistry comparisons to estimates based on empirical algorithms provided additional context for adjustment decisions. The adjustments that we applied are intended to remove potential biases from errors related to measurement, calibration, and data-handling practices without removing known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1 in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete CO2 fugacity (fCO2), were not subjected to bias comparison or adjustments. The original data, their documentation, and DOI codes are available at the Ocean Carbon and Acidification Data System of NOAA National Centers for Environmental Information (NCEI), which also provides access to the merged data product. This is provided as a single global file and as four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under https://doi.org/10.25921/zyrq-ht66 (Lauvset et al., 2023). These bias-adjusted product files also include significant ancillary and approximated data, which were obtained by interpolation of, or calculation from, measured data. This living data update documents the GLODAPv2.2023 methods and provides a broad overview of the secondary quality control procedures and results.

     
    more » « less
  3. null (Ed.)
    Abstract. The Global Ocean Data Analysis Project (GLODAP) is asynthesis effort providing regular compilations of surface-to-bottom oceanbiogeochemical data, with an emphasis on seawater inorganic carbon chemistryand related variables determined through chemical analysis of seawatersamples. GLODAPv2.2020 is an update of the previous version, GLODAPv2.2019.The major changes are data from 106 new cruises added, extension of timecoverage to 2019, and the inclusion of available (also for historicalcruises) discrete fugacity of CO2 (fCO2) values in the mergedproduct files. GLODAPv2.2020 now includes measurements from more than 1.2 million water samples from the global oceans collected on 946 cruises. Thedata for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate,phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12,CFC-113, and CCl4) have undergone extensive quality control with afocus on systematic evaluation of bias. The data are available in twoformats: (i) as submitted by the data originator but updated to WOCEexchange format and (ii) as a merged data product with adjustments appliedto minimize bias. These adjustments were derived by comparing the data fromthe 106 new cruises with the data from the 840 quality-controlled cruises ofthe GLODAPv2.2019 data product using crossover analysis. Comparisons toempirical algorithm estimates provided additional context for adjustmentdecisions; this is new to this version. The adjustments are intended toremove potential biases from errors related to measurement, calibration, anddata-handling practices without removing known or likely time trends orvariations in the variables evaluated. The compiled and adjusted dataproduct is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate,4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % inthe halogenated transient tracers. The other variables included in thecompilation, such as isotopic tracers and discrete fCO2, were notsubjected to bias comparison or adjustments. The original data and their documentation and DOI codes are available at theOcean Carbon Data System of NOAA NCEI(https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2020/, lastaccess: 20 June 2020). This site also provides access to the merged dataproduct, which is provided as a single global file and as four regional ones– the Arctic, Atlantic, Indian, and Pacific oceans –under https://doi.org/10.25921/2c8h-sa89 (Olsen et al., 2020). Thesebias-adjusted product files also include significant ancillary andapproximated data. These were obtained by interpolation of, or calculationfrom, measured data. This living data update documents the GLODAPv2.2020methods and provides a broad overview of the secondary quality controlprocedures and results. 
    more » « less
  4. Abstract

    Nitrite is a key intermediate during fixed nitrogen loss in the ocean, and it accumulates within marine Oxygen Deficient Zones (ODZ). ODZs are vast subsurface regions where nitrate is the dominant electron acceptor, and these regions host approximately 50% of the fixed nitrogen loss in the world's oceans. Nitrite accumulates in these waters, and recent research has discovered substantial reoxidation of nitrite back to nitrate, a significant process in the global nitrogen cycle. Partitioning between reduction and oxidation determines if marine fixed nitrogen is lost or recycled. Investigations into nitrite oxidation typically rely on results from incubations, which limits the spatiotemporal sampling coverage. Using basin‐scale data, we analyzed the ratios of nutrient regeneration within the three water masses that feed the Eastern Tropical North Pacific (ETNP) ODZ. Deviations in the ratios of nutrient regeneration from Redfield stoichiometry indicated prolific nitrite reoxidation across this region. We estimate that 79 ± 7% of the nitrite produced in the ODZ between the 26.2 and 26.4 kg m−3isopycnals is reoxidized, whereas 54 ± 2% of the nitrite produced between the 26.7 and 26.9 kg m−3isopycnals is reoxidized. Our analysis also illustrates discrete “metabolic switching points” from primarily aerobic to primary anaerobic processes, which occur in each water mass. We applied water mass analysis to repeat cruises on the WOCE P18 line from Baja California to 10°N, which revealed high spatiotemporal variability in nitrite reoxidation. These results confirm previous measurements of significant fixed nitrogen recycling across the ETNP; however, our analysis enables high‐resolution estimates of this process.

     
    more » « less
  5. Abstract. As elsewhere in the global ocean, the Gulf of Alaska is experiencing the rapid onset of ocean acidification (OA) driven by oceanic absorption of anthropogenic emissions of carbon dioxide from the atmosphere. In support of OA research and monitoring, we present here a data product of marine inorganic carbon chemistry parameters measured from seawater samples taken during biannual cruises between 2008 and 2017 in the northern Gulf of Alaska. Samples were collected each May and September over the 10 year period using a conductivity, temperature, depth (CTD) profiler coupled with a Niskin bottle rosette at stations including a long-term hydrographic survey transect known as the Gulf of Alaska (GAK) Line. This dataset includes discrete seawater measurements such as dissolved inorganic carbon and total alkalinity, which allows the calculation of other marine carbon parameters, including carbonate mineral saturation states, carbon dioxide (CO2), and pH. Cumulative daily Bakun upwelling indices illustrate the pattern of downwelling in the northern Gulf of Alaska, with a period of relaxation spanning between the May and September cruises. The observed time and space variability impart challenges for disentangling the OA signal despite this dataset spanning a decade. However, this data product greatly enhances our understanding of seasonal and interannual variability in the marine inorganic carbon system parameters. The product can also aid in the ground truthing of biogeochemical models, refining estimates of sea–air CO2 exchange, and determining appropriate CO2 parameter ranges for experiments targeting potentially vulnerable species. Data are available at https://doi.org/10.25921/x9sg-9b08 (Monacci et al., 2023).

     
    more » « less