skip to main content


Title: An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2020
Abstract. The Global Ocean Data Analysis Project (GLODAP) is asynthesis effort providing regular compilations of surface-to-bottom oceanbiogeochemical data, with an emphasis on seawater inorganic carbon chemistryand related variables determined through chemical analysis of seawatersamples. GLODAPv2.2020 is an update of the previous version, GLODAPv2.2019.The major changes are data from 106 new cruises added, extension of timecoverage to 2019, and the inclusion of available (also for historicalcruises) discrete fugacity of CO2 (fCO2) values in the mergedproduct files. GLODAPv2.2020 now includes measurements from more than 1.2 million water samples from the global oceans collected on 946 cruises. Thedata for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate,phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12,CFC-113, and CCl4) have undergone extensive quality control with afocus on systematic evaluation of bias. The data are available in twoformats: (i) as submitted by the data originator but updated to WOCEexchange format and (ii) as a merged data product with adjustments appliedto minimize bias. These adjustments were derived by comparing the data fromthe 106 new cruises with the data from the 840 quality-controlled cruises ofthe GLODAPv2.2019 data product using crossover analysis. Comparisons toempirical algorithm estimates provided additional context for adjustmentdecisions; this is new to this version. The adjustments are intended toremove potential biases from errors related to measurement, calibration, anddata-handling practices without removing known or likely time trends orvariations in the variables evaluated. The compiled and adjusted dataproduct is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate,4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % inthe halogenated transient tracers. The other variables included in thecompilation, such as isotopic tracers and discrete fCO2, were notsubjected to bias comparison or adjustments. The original data and their documentation and DOI codes are available at theOcean Carbon Data System of NOAA NCEI(https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2020/, lastaccess: 20 June 2020). This site also provides access to the merged dataproduct, which is provided as a single global file and as four regional ones– the Arctic, Atlantic, Indian, and Pacific oceans –under https://doi.org/10.25921/2c8h-sa89 (Olsen et al., 2020). Thesebias-adjusted product files also include significant ancillary andapproximated data. These were obtained by interpolation of, or calculationfrom, measured data. This living data update documents the GLODAPv2.2020methods and provides a broad overview of the secondary quality controlprocedures and results.  more » « less
Award ID(s):
1850983
NSF-PAR ID:
10293884
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Earth System Science Data
Volume:
12
Issue:
4
ISSN:
1866-3516
Page Range / eLocation ID:
3653 to 3678
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The Global Ocean Data Analysis Project (GLODAP) is asynthesis effort providing regular compilations of surface to bottom oceanbiogeochemical data, with an emphasis on seawater inorganic carbon chemistryand related variables determined through chemical analysis of water samples.This update of GLODAPv2, v2.2019, adds data from 116 cruises to the previousversion, extending its coverage in time from 2013 to 2017, while also addingsome data from prior years. GLODAPv2.2019 includes measurements from morethan 1.1 million water samples from the global oceans collected on 840cruises. The data for the 12 GLODAP core variables (salinity, oxygen,nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity,pH, CFC-11, CFC-12, CFC-113, and CCl4) have undergone extensive qualitycontrol, especially systematic evaluation of bias. The data are available intwo formats: (i) as submitted by the data originator but updated to WOCEexchange format and (ii) as a merged data product with adjustments appliedto minimize bias. These adjustments were derived by comparing the data fromthe 116 new cruises with the data from the 724 quality-controlled cruises ofthe GLODAPv2 data product. They correct for errors related to measurement,calibration, and data handling practices, taking into account any known orlikely time trends or variations. The compiled and adjusted data product isbelieved to be consistent to better than 0.005 in salinity, 1 % in oxygen,2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1 in totalalkalinity, 0.01–0.02 in pH, and 5 % in the halogenated transienttracers. The compilation also includes data for several other variables,such as isotopic tracers. These were not subjected to bias comparison oradjustments. The original data, their documentation and DOI codes are available in theOcean Carbon Data System of NOAA NCEI(https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2019/, last access: 17 September 2019). Thissite also provides access to the merged data product, which is provided as asingle global file and as four regional ones – the Arctic, Atlantic, Indian,and Pacific oceans – under https://doi.org/10.25921/xnme-wr20(Olsen et al., 2019). Theproduct files also include significant ancillary and approximated data.These were obtained by interpolation of, or calculation from, measured data.This paper documents the GLODAPv2.2019 methods and provides a broad overviewof the secondary quality control procedures and results. 
    more » « less
  2. null (Ed.)
    Abstract. Internally consistent, quality-controlled (QC) data products play animportant role in promoting regional-to-global research efforts tounderstand societal vulnerabilities to ocean acidification (OA). However,there are currently no such data products for the coastal ocean, where mostof the OA-susceptible commercial and recreational fisheries and aquacultureindustries are located. In this collaborative effort, we compiled, quality-controlled, and synthesized 2 decades of discrete measurements ofinorganic carbon system parameters, oxygen, and nutrient chemistry data fromthe North American continental shelves to generate a data product calledthe Coastal Ocean Data Analysis Product in North America (CODAP-NA). Thereare few deep-water (> 1500 m) sampling locations in the currentdata product. As a result, crossover analyses, which rely on comparisonsbetween measurements on different cruises in the stable deep ocean, couldnot form the basis for cruise-to-cruise adjustments. For this reason, carewas taken in the selection of data sets to include in this initial releaseof CODAP-NA, and only data sets from laboratories with known qualityassurance practices were included. New consistency checks and outlierdetections were used to QC the data. Future releases of this CODAP-NAproduct will use this core data product as the basis for cruise-to-cruisecomparisons. We worked closely with the investigators who collected andmeasured these data during the QC process. This version (v2021) of theCODAP-NA is comprised of 3391 oceanographic profiles from 61 researchcruises covering all continental shelves of North America, from Alaska toMexico in the west and from Canada to the Caribbean in the east. Data for 14variables (temperature; salinity; dissolved oxygen content; dissolvedinorganic carbon content; total alkalinity; pH on total scale; carbonateion content; fugacity of carbon dioxide; and substance contents of silicate,phosphate, nitrate, nitrite, nitrate plus nitrite, and ammonium) have beensubjected to extensive QC. CODAP-NA is available as a merged data product(Excel, CSV, MATLAB, and NetCDF; https://doi.org/10.25921/531n-c230,https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0219960.html, last access: 15 May 2021)(Jiang et al., 2021a). The original cruise data have also been updated withdata providers' consent and summarized in a table with links to NOAA'sNational Centers for Environmental Information (NCEI) archives(https://www.ncei.noaa.gov/access/ocean-acidification-data-stewardship-oads/synthesis/NAcruises.html). 
    more » « less
  3. This dataset consists of the Surface Ocean CO2 Atlas Version 2022 (SOCATv2022) data product files. The ocean absorbs one quarter of the global CO2 emissions from human activity. The community-led Surface Ocean CO2 Atlas (www.socat.info) is key for the quantification of ocean CO2 uptake and its variation, now and in the future. SOCAT version 2022 has quality-controlled in situ surface ocean fCO2 (fugacity of CO2) measurements on ships, moorings, autonomous and drifting surface platforms for the global oceans and coastal seas from 1957 to 2021. The main synthesis and gridded products contain 33.7 million fCO2 values with an estimated accuracy of better than 5 μatm. A further 6.4 million fCO2 sensor data with an estimated accuracy of 5 to 10 μatm are separately available. During quality control, marine scientists assign a flag to each data set, as well as WOCE flags of 2 (good), 3 (questionable) or 4 (bad) to individual fCO2 values. Data sets are assigned flags of A and B for an estimated accuracy of better than 2 μatm, flags of C and D for an accuracy of better than 5 μatm and a flag of E for an accuracy of better than 10 μatm. Bakker et al. (2016) describe the quality control criteria used in SOCAT versions 3 to 2022. Quality control comments for individual data sets can be accessed via the SOCAT Data Set Viewer (www.socat.info). All data sets, where data quality has been deemed acceptable, have been made public. The main SOCAT synthesis files and the gridded products contain all data sets with an estimated accuracy of better than 5 µatm (data set flags of A to D) and fCO2 values with a WOCE flag of 2. Access to data sets with an estimated accuracy of 5 to 10 (flag of E) and fCO2 values with flags of 3 and 4 is via additional data products and the Data Set Viewer (Table 8 in Bakker et al., 2016). SOCAT publishes a global gridded product with a 1° longitude by 1° latitude resolution. A second product with a higher resolution of 0.25° longitude by 0.25° latitude is available for the coastal seas. The gridded products contain all data sets with an estimated accuracy of better than 5 µatm (data set flags of A to D) and fCO2 values with a WOCE flag of 2. Gridded products are available monthly, per year and per decade. Two powerful, interactive, online viewers, the Data Set Viewer and the Gridded Data Viewer (www.socat.info), enable investigation of the SOCAT synthesis and gridded data products. SOCAT data products can be downloaded. Matlab code is available for reading these files. Ocean Data View also provides access to the SOCAT data products (www.socat.info). SOCAT data products are discoverable, accessible and citable. The SOCAT Data Use Statement (www.socat.info) asks users to generously acknowledge the contribution of SOCAT scientists by invitation to co-authorship, especially for data providers in regional studies, and/or reference to relevant scientific articles. The SOCAT website (www.socat.info) provides a single access point for online viewers, downloadable data sets, the Data Use Statement, a list of contributors and an overview of scientific publications on and using SOCAT. Automation of data upload and initial data checks allows annual releases of SOCAT from version 4 onwards. SOCAT is used for quantification of ocean CO2 uptake and ocean acidification and for evaluation of climate models and sensor data. SOCAT products inform the annual Global Carbon Budget since 2013. The annual SOCAT releases by the SOCAT scientific community are a Voluntary Commitment for United Nations Sustainable Development Goal 14.3 (Reduce Ocean Acidification) (#OceanAction20464). More broadly the SOCAT releases contribute to UN SDG 13 (Climate Action) and SDG 14 (Life Below Water), and to the UN Decade of Ocean Science for Sustainable Development. Hundreds of peer-reviewed scientific publications and high-impact reports cite SOCAT. The SOCAT community-led synthesis product is a key step in the value chain based on in situ inorganic carbon measurements of the oceans, which provides policy makers with critical information on ocean CO2 uptake in climate negotiations. The need for accurate knowledge of global ocean CO2 uptake and its (future) variation makes sustained funding of in situ surface ocean CO2 observations imperative. 
    more » « less
  4. We present a spatially and vertically resolved global grid of dissolved barium concentrations ([Ba]) in seawater determined using Gaussian Process Regression machine learning. This model was trained using 4,345 quality-controlled GEOTRACES data from the Arctic, Atlantic, Pacific, and Southern Oceans. Model output was validated by assessing the accuracy of [Ba] simulations in the Indian Ocean, noting that none of the Indian Ocean data were seen by the model during training. We identify a model that can accurate predict [Ba] in the Indian Ocean using seven features: depth, temperature, salinity, as well as dissolved dioxygen, phosphate, nitrate, and silicate concentrations. This model achieves a mean absolute percentage error of 6.0 %, which we assume represents the generalization error. This model was used to simulate [Ba] on a global basis using predictor data from the World Ocean Atlas 2018. The global model of [Ba] is on a 1°x 1° grid with 102 depth levels from 0 to 5,500 m. The dissolved [Ba] output was then used to simulate dissolved Ba* (barium-star), which is the difference between 'observed' and [Ba] predicted from co-located [Si]. Lastly, [Ba] data were combined with temperature, salinity, and pressure data from the World Ocean Atlas to calculate the saturation state of seawater with respect to barite. The model reveals that the volume-weighted mean oceanic [Ba] and and saturation state are 89 nmol/kg and 0.82, respectively. These results imply that the total marine Ba inventory is 122(±7) ×10¹² mol and that the ocean below 1,000 m is at barite equilibrium. 
    more » « less
  5. Abstract. The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "living data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID. 
    more » « less