Atmospheric processes involve both space and time. Thus, humans looking at atmospheric imagery can often spot important signals in an animated loop of an image sequence not apparent in an individual (static) image. Utilizing such signals with automated algorithms requires the ability to identify complex spatiotemporal patterns in image sequences. That is a very challenging task due to the endless possibilities of patterns in both space and time. Here, we review different concepts and techniques that are useful to extract spatiotemporal signals from meteorological image sequences to expand the effectiveness of AI algorithms for classification and prediction tasks. We first present two applications that motivate the need for these approaches in meteorology, namely the detection of convection from satellite imagery and solar forecasting. Then we provide an overview of concepts and techniques that are helpful for the interpretation of meteorological image sequences, such as (a) feature engineering methods using (i) meteorological knowledge, (ii) classic image processing, (iii) harmonic analysis, and (iv) topological data analysis; (b) ways to use convolutional neural networks for this purpose with emphasis on discussing different convolution filters (2D/3D/LSTM-convolution); and (c) a brief survey of several other concepts, including the concept of “attention” in neural networks and its utility for the interpretation of image sequences and strategies from self-supervised and transfer learning to reduce the need for large labeled datasets. We hope that presenting an overview of these tools—many of which are not new but underutilized in this context—will accelerate progress in this area.
- Award ID(s):
- 1934668
- PAR ID:
- 10293058
- Date Published:
- Journal Name:
- Bulletin of the American Meteorological Society
- Volume:
- 101
- Issue:
- 12
- ISSN:
- 0003-0007
- Page Range / eLocation ID:
- E2149 to E2170
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)This paper presents a policy-driven sequential image augmentation approach for image-related tasks. Our approach applies a sequence of image transformations (e.g., translation, rotation) over a training image, one transformation at a time, with the augmented image from the previous time step treated as the input for the next transformation. This sequential data augmentation substantially improves sample diversity, leading to improved test performance, especially for data-hungry models (e.g., deep neural networks). However, the search for the optimal transformation of each image at each time step of the sequence has high complexity due to its combination nature. To address this challenge, we formulate the search task as a sequential decision process and introduce a deep policy network that learns to produce transformations based on image content. We also develop an iterative algorithm to jointly train a classifier and the policy network in the reinforcement learning setting. The immediate reward of a potential transformation is defined to encourage transformations producing hard samples for the current classifier. At each iteration, we employ the policy network to augment the training dataset, train a classifier with the augmented data, and train the policy net with the aid of the classifier. We apply the above approach to both public image classification benchmarks and a newly collected image dataset for material recognition. Comparisons to alternative augmentation approaches show that our policy-driven approach achieves comparable or improved classification performance while using significantly fewer augmented images. The code is available at https://github.com/Paul-LiPu/rl_autoaug.more » « less
-
Abstract Over the past decade the use of machine learning in meteorology has grown rapidly. Specifically neural networks and deep learning have been used at an unprecedented rate. To fill the dearth of resources covering neural networks with a meteorological lens, this paper discusses machine learning methods in a plain language format that is targeted to the operational meteorological community. This is the second paper in a pair that aim to serve as a machine learning resource for meteorologists. While the first paper focused on traditional machine learning methods (e.g., random forest), here a broad spectrum of neural networks and deep learning methods is discussed. Specifically, this paper covers perceptrons, artificial neural networks, convolutional neural networks, and U-networks. Like the Part I paper, this manuscript discusses the terms associated with neural networks and their training. Then the manuscript provides some intuition behind every method and concludes by showing each method used in a meteorological example of diagnosing thunderstorms from satellite images (e.g., lightning flashes). This paper is accompanied with an open-source code repository to allow readers to explore neural networks using either the dataset provided (which is used in the paper) or as a template for alternate datasets.
-
Abstract Neural networks have become increasingly prevalent within the geosciences, although a common limitation of their usage has been a lack of methods to interpret what the networks learn and how they make decisions. As such, neural networks have often been used within the geosciences to most accurately identify a desired output given a set of inputs, with the interpretation of what the network learns used as a secondary metric to ensure the network is making the right decision for the right reason. Neural network interpretation techniques have become more advanced in recent years, however, and we therefore propose that the ultimate objective of using a neural network can also be the interpretation of what the network has learned rather than the output itself. We show that the interpretation of neural networks can enable the discovery of scientifically meaningful connections within geoscientific data. In particular, we use two methods for neural network interpretation called backward optimization and layerwise relevance propagation, both of which project the decision pathways of a network back onto the original input dimensions. To the best of our knowledge, LRP has not yet been applied to geoscientific research, and we believe it has great potential in this area. We show how these interpretation techniques can be used to reliably infer scientifically meaningful information from neural networks by applying them to common climate patterns. These results suggest that combining interpretable neural networks with novel scientific hypotheses will open the door to many new avenues in neural network‐related geoscience research.
-
Zelinski, Michael E. ; Taha, Tarek M. ; Howe, Jonathan (Ed.)Image classification forms an important class of problems in machine learning and is widely used in many realworld applications, such as medicine, ecology, astronomy, and defense. Convolutional neural networks (CNNs) are machine learning techniques designed for inputs with grid structures, e.g., images, whose features are spatially correlated. As such, CNNs have been demonstrated to be highly effective approaches for many image classification problems and have consistently outperformed other approaches in many image classification and object detection competitions. A particular challenge involved in using machine learning for classifying images is measurement data loss in the form of missing pixels, which occurs in settings where scene occlusions are present or where the photodetectors in the imaging system are partially damaged. In such cases, the performance of CNN models tends to deteriorate or becomes unreliable even when the perturbations to the input image are small. In this work, we investigate techniques for improving the performance of CNN models for image classification with missing data. In particular, we explore training on a variety of data alterations that mimic data loss for producing more robust classifiers. By optimizing the categorical cross-entropy loss function, we demonstrate through numerical experiments on the MNIST dataset that training with these synthetic alterations can enhance the classification accuracy of our CNN models.more » « less