skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: A Machine Learning Tutorial for Operational Meteorology. Part II: Neural Networks and Deep Learning
Abstract

Over the past decade the use of machine learning in meteorology has grown rapidly. Specifically neural networks and deep learning have been used at an unprecedented rate. To fill the dearth of resources covering neural networks with a meteorological lens, this paper discusses machine learning methods in a plain language format that is targeted to the operational meteorological community. This is the second paper in a pair that aim to serve as a machine learning resource for meteorologists. While the first paper focused on traditional machine learning methods (e.g., random forest), here a broad spectrum of neural networks and deep learning methods is discussed. Specifically, this paper covers perceptrons, artificial neural networks, convolutional neural networks, and U-networks. Like the Part I paper, this manuscript discusses the terms associated with neural networks and their training. Then the manuscript provides some intuition behind every method and concludes by showing each method used in a meteorological example of diagnosing thunderstorms from satellite images (e.g., lightning flashes). This paper is accompanied with an open-source code repository to allow readers to explore neural networks using either the dataset provided (which is used in the paper) or as a template for alternate datasets.

 
more » « less
Award ID(s):
2019758
PAR ID:
10435441
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Weather and Forecasting
Volume:
38
Issue:
8
ISSN:
0882-8156
Page Range / eLocation ID:
p. 1271-1293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An efficient feature selection method can significantly boost results in classification problems. Despite ongoing improvement, hand-designed methods often fail to extract features capturing high- and mid-level representations at effective levels. In machine learning (Deep Learning), recent developments have improved upon these hand-designed methods by utilizing automatic extraction of features. Specifically, Convolutional Neural Networks (CNNs) are a highly successful technique for image classification which can automatically extract features, with ongoing learning and classification of these features. The purpose of this study is to detect hydraulic structures (i.e., bridges and culverts) that are important to overland flow modeling and environmental applications. The dataset used in this work is a relatively small dataset derived from 1-m LiDAR-derived Digital Elevation Models (DEMs) and National Agriculture Imagery Program (NAIP) aerial imagery. The classes for our experiment consist of two groups: the ones with a bridge/culvert being present are considered "True", and those without a bridge/culvert are considered "False". In this paper, we use advanced CNN techniques, including Siamese Neural Networks (SNNs), Capsule Networks (CapsNets), and Graph Convolutional Networks (GCNs), to classify samples with similar topographic and spectral characteristics, an objective which is challenging utilizing traditional machine learning techniques, such as Support Vector Machine (SVM), Gaussian Classifier (GC), and Gaussian Mixture Model (GMM). The advanced CNN-based approaches combined with data pre-processing techniques (e.g., data augmenting) produced superior results. These approaches provide efficient, cost-effective, and innovative solutions to the identification of hydraulic structures. 
    more » « less
  2. null (Ed.)
    With the recent advancement of deep learning, molecular representation learning -- automating the discovery of feature representation of molecular structure, has attracted significant attention from both chemists and machine learning researchers. Deep learning can facilitate a variety of downstream applications, including bio-property prediction, chemical reaction prediction, etc. Despite the fact that current SMILES string or molecular graph molecular representation learning algorithms (via sequence modeling and graph neural networks, respectively) have achieved promising results, there is no work to integrate the capabilities of both approaches in preserving molecular characteristics (e.g, atomic cluster, chemical bond) for further improvement. In this paper, we propose GraSeq, a joint graph and sequence representation learning model for molecular property prediction. Specifically, GraSeq makes a complementary combination of graph neural networks and recurrent neural networks for modeling two types of molecular inputs, respectively. In addition, it is trained by the multitask loss of unsupervised reconstruction and various downstream tasks, using limited size of labeled datasets. In a variety of chemical property prediction tests, we demonstrate that our GraSeq model achieves better performance than state-of-the-art approaches. 
    more » « less
  3. Abstract

    Robust quantification of predictive uncertainty is a critical addition needed for machine learning applied to weather and climate problems to improve the understanding of what is driving prediction sensitivity. Ensembles of machine learning models provide predictive uncertainty estimates in a conceptually simple way but require multiple models for training and prediction, increasing computational cost and latency. Parametric deep learning can estimate uncertainty with one model by predicting the parameters of a probability distribution but does not account for epistemic uncertainty. Evidential deep learning, a technique that extends parametric deep learning to higher-order distributions, can account for both aleatoric and epistemic uncertainties with one model. This study compares the uncertainty derived from evidential neural networks to that obtained from ensembles. Through applications of the classification of winter precipitation type and regression of surface-layer fluxes, we show evidential deep learning models attaining predictive accuracy rivaling standard methods while robustly quantifying both sources of uncertainty. We evaluate the uncertainty in terms of how well the predictions are calibrated and how well the uncertainty correlates with prediction error. Analyses of uncertainty in the context of the inputs reveal sensitivities to underlying meteorological processes, facilitating interpretation of the models. The conceptual simplicity, interpretability, and computational efficiency of evidential neural networks make them highly extensible, offering a promising approach for reliable and practical uncertainty quantification in Earth system science modeling. To encourage broader adoption of evidential deep learning, we have developed a new Python package, Machine Integration and Learning for Earth Systems (MILES) group Generalized Uncertainty for Earth System Science (GUESS) (MILES-GUESS) (https://github.com/ai2es/miles-guess), that enables users to train and evaluate both evidential and ensemble deep learning.

    Significance Statement

    This study demonstrates a new technique, evidential deep learning, for robust and computationally efficient uncertainty quantification in modeling the Earth system. The method integrates probabilistic principles into deep neural networks, enabling the estimation of both aleatoric uncertainty from noisy data and epistemic uncertainty from model limitations using a single model. Our analyses reveal how decomposing these uncertainties provides valuable insights into reliability, accuracy, and model shortcomings. We show that the approach can rival standard methods in classification and regression tasks within atmospheric science while offering practical advantages such as computational efficiency. With further advances, evidential networks have the potential to enhance risk assessment and decision-making across meteorology by improving uncertainty quantification, a longstanding challenge. This work establishes a strong foundation and motivation for the broader adoption of evidential learning, where properly quantifying uncertainties is critical yet lacking.

     
    more » « less
  4. The ever-growing demand for accurate machine learning models resulted in an increase in dataset and model sizes of deep neural networks. This paper discusses reconfigurable optical networks as the key enabler for scaling AI systems.

     
    more » « less
  5. null (Ed.)
    Abstract The method of neural networks (aka deep learning) has opened up many new opportunities to utilize remotely sensed images in meteorology. Common applications include image classification, e.g., to determine whether an image contains a tropical cyclone, and image-to-image translation, e.g., to emulate radar imagery for satellites that only have passive channels. However, there are yet many open questions regarding the use of neural networks for working with meteorological images, such as best practices for evaluation, tuning, and interpretation. This article highlights several strategies and practical considerations for neural network development that have not yet received much attention in the meteorological community, such as the concept of receptive fields, underutilized meteorological performance measures, and methods for neural network interpretation, such as synthetic experiments and layer-wise relevance propagation. We also consider the process of neural network interpretation as a whole, recognizing it as an iterative meteorologist-driven discovery process that builds on experimental design and hypothesis generation and testing. Finally, while most work on neural network interpretation in meteorology has so far focused on networks for image classification tasks, we expand the focus to also include networks for image-to-image translation. 
    more » « less