skip to main content

Title: Radio Frequency Fingerprinting on the Edge
Deep learning methods have been very successful at radio frequency fingerprinting tasks, predicting the identity of transmitting devices with high accuracy. We study radio frequency fingerprinting deployments at resource-constrained edge devices. We use structured pruning to jointly train and sparsify neural networks tailored to edge hardware implementations. We compress convolutional layers by a 27.2× factor while incurring a negligible prediction accuracy decrease (less than 1%). We demonstrate the efficacy of our approach over multiple edge hardware platforms, including a Samsung Galaxy S10 phone and a Xilinx-ZCU104 FPGA. Our method yields significant inference speedups, 11.5× on the FPGA and 3× on the smartphone, as well as high efficiency: the FPGA processing time is 17× smaller than in a V100 GPU. To the best of our knowledge, we are the first to explore the possibility of compressing networks for radio frequency fingerprinting; as such, our experiments can be seen as a means of characterizing the informational capacity associated with this specific learning task.  more » « less
Award ID(s):
1937500 1923789
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Mobile Computing
Page Range / eLocation ID:
1 to 1
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract—Human activity recognition (HAR) is a challenging area of research with many applications in human-computer interaction. With advances in artificial neural networks (ANNs), methods of HAR feature extraction from wearable sensor data have greatly improved and have increased interest in their classification using ANNs. Most prior work has only investigated the software implementations of ANN-based HAR. Here, we investigate, for the first time, two novel hardware implementations for use in resource-constrained edge devices. Through architecture exploration, we identify first a hybrid ANN we call DCLSTM incorporating the convolutional and long-short-term memory techniques. The second is a much more compact implementation WCLSTM that uses wavelet transforms (WTs) to enhance feature extraction; it can achieve even better accuracy while being smaller and simpler; it is therefore the better choice for resource-constrained applications. We present hardware implementations of these ANNs and evaluate their performance and resource utilization on the UCI HAR and WISDM datasets. Synthesis results on an FPGA platform show the superiority of the WT-assisted version in accuracy and size. Moreover, our networks achieve a better accuracy than earlier published works. 
    more » « less
  2. 5G and open radio access networks (Open RANs) will result in vendor-neutral hardware deployment that will require additional diligence towards managing security risks. This new paradigm will allow the same network infrastructure to support virtual network slices for transmit different waveforms, such as 5G New Radio, LTE, WiFi, at different times. In this multi- vendor, multi-protocol/waveform setting, we propose an additional physical layer authentication method that detects a specific emitter through a technique called as RF fingerprinting. Our deep learning approach uses convolutional neural networks augmented with triplet loss, where examples of similar/dissimilar signal samples are shown to the classifier over the training duration. We demonstrate the feasibility of RF fingerprinting base stations over the large-scale over-the-air experimental POWDER platform in Salt Lake City, Utah, USA. Using real world datasets, we show how our approach overcomes the challenges posed by changing channel conditions and protocol choices with 99.86% detection accuracy for different training and testing days. 
    more » « less
  3. There have been many recent attempts to extend the successes of convolutional neural networks (CNNs) from 2-dimensional (2D) image classification to 3-dimensional (3D) video recognition by exploring 3D CNNs. Considering the emerging growth of mobile or Internet of Things (IoT) market, it is essential to investigate the deployment of 3D CNNs on edge devices. Previous works have implemented standard 3D CNNs (C3D) on hardware platforms, however, they have not exploited model compression for acceleration of inference. This work proposes a hardware-aware pruning approach that can fully adapt to the loop tiling technique of FPGA design and is applied onto a novel 3D network called R(2+1)D. Leveraging the powerful ADMM, the proposed pruning method achieves simultaneous high accuracy and significant acceleration of computation on FPGA. With layer-wise pruning rates up to 10× and negligible accuracy loss, the pruned model is implemented on a Xilinx ZCU102 FPGA board, where the pruned model achieves 2.6× speedup compared with the unpruned version, and 2.3× speedup and 2.3× power efficiency improvement compared with state-of-the-art FPGA implementation of C3D. 
    more » « less
  4. Efficient deployment of Deep Neural Networks (DNNs) on edge devices (i.e., FPGAs and mobile platforms) is very challenging, especially under a recent witness of the increasing DNN model size and complexity. Model compression strategies, including weight quantization and pruning, are widely recognized as effective approaches to significantly reduce computation and memory intensities, and have been implemented in many DNNs on edge devices. However, most state-of-the-art works focus on ad-hoc optimizations, and there lacks a thorough study to comprehensively reveal the potentials and constraints of different edge devices when considering different compression strategies. In this paper, we qualitatively and quantitatively compare the energy efficiency of FPGA-based and mobile-based DNN executions using mobile GPU and provide a detailed analysis. Based on the observations obtained from the analysis, we propose a unified optimization framework using block-based pruning to reduce the weight storage and accelerate the inference speed on mobile devices and FPGAs, achieving high hardware performance and energy-efficiency gain while maintaining accuracy. 
    more » « less
  5. Various hardware accelerators have been developed for energy-efficient and real-time inference of neural networks on edge devices. However, most training is done on high-performance GPUs or servers, and the huge memory and computing costs prevent training neural networks on edge devices. This paper proposes a novel tensor-based training framework, which offers orders-of-magnitude memory reduction in the training process. We propose a novel rank-adaptive tensorized neural network model, and design a hardware-friendly low-precision algorithm to train this model. We present an FPGA accelerator to demonstrate the benefits of this training method on edge devices. Our preliminary FPGA implementation achieves 59× speedup and 123× energy reduction compared to embedded CPU, and 292× memory reduction over a standard full-size training. 
    more » « less