skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photoreductive chlorine elimination from a Ni( iii )Cl 2 complex supported by a tetradentate pyridinophane ligand
Herein we report the isolation, characterization, and photoreactivity of a stable Ni III dichloride complex supported by a tetradentate pyridinophane N-donor ligand. Upon irradiation, this complex undergoes an efficient photoreductive chlorine elimination reaction, both in solution and the solid-state. Subsequently, the Ni III Cl 2 species can be regenerated via a reaction with PhICl 2 .  more » « less
Award ID(s):
1925751
PAR ID:
10293313
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
57
Issue:
59
ISSN:
1359-7345
Page Range / eLocation ID:
7264 to 7267
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High-resolution X-ray diffraction experiments, theoretical calculations and atom-specific X-ray absorption experiments were used to investigate two nickel complexes, (MePh 3 P) 2 [Ni II (bdtCl 2 ) 2 ]·2(CH 3 ) 2 SO [complex (1)] and (MePh 3 P)[Ni III (bdtCl 2 ) 2 ] [complex (2)]. Combining the techniques of nickel K - and sulfur K -edge X-ray absorption spectroscopy with high-resolution X-ray charge density modeling, together with theoretical calculations, the actual oxidation states of the central Ni atoms in these two complexes are investigated. Ni ions in two complexes are clearly in different oxidation states: the Ni ion of complex (1) is formally Ni II ; that of complex (2) should be formally Ni III , yet it is best described as a combination of Ni 2+ and Ni 3+ , due to the involvement of the non-innocent ligand in the Ni— L bond. A detailed description of Ni—S bond character (σ,π) is presented. 
    more » « less
  2. Interest in O 2 -dependent aliphatic carbon–carbon (C–C) bond cleavage reactions of first row divalent metal diketonate complexes stems from the desire to further understand the reaction pathways of enzymes such as DKE1 and to extract information to develop applications in organic synthesis. A recent report of O 2 -dependent aliphatic C–C bond cleavage at ambient temperature in Ni( ii ) diketonate complexes supported by a tridentate nitrogen donor ligand [(MBBP)Ni(PhC(O)CHC(O)Ph)]Cl ( 7-Cl ; MBBP = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine) in the presence of NEt 3 spurred our interest in further examining the chemistry of such complexes. A series of new TERPY-ligated Ni( ii ) diketonate complexes of the general formula [(TERPY)Ni(R 2 -1,3-diketonate)]ClO 4 ( 1 : R = CH 3 ; 2 : R = C(CH 3 ) 3 ; 3 : R = Ph) was prepared under air and characterized using single crystal X-ray crystallography, elemental analysis, 1 H NMR, ESI-MS, FTIR, and UV-vis. Analysis of the reaction mixtures in which these complexes were generated using 1 H NMR and ESI-MS revealed the presence of both the desired diketonate complex and the bis-TERPY derivative [(TERPY) 2 Ni](ClO 4 ) 2 ( 4 ). Through selective crystallization 1–3 were isolated in analytically pure form. Analysis of reaction mixtures leading to the formation of the MBBP analogs [(MBBP)Ni(R 2 -1,3-diketonate)]X (X = ClO 4 : 5 : R = CH 3 ; 6 : R = C(CH 3 ) 3 ; 7-ClO4 : R = Ph; X = Cl: 7-Cl : R = Ph) using 1 H NMR and ESI-MS revealed the presence of [(MBBP) 2 Ni](ClO 4 ) 2 ( 8 ). Analysis of aerobic acetonitrile solutions of analytically pure 1–3 , 5 and 6 containing NEt 3 and in some cases H 2 O using 1 H NMR and UV-vis revealed evidence for the formation of additional bis-ligand complexes ( 4 and 8 ) but suggested no oxidative diketonate cleavage reactivity. Analysis of the organic products generated from 3 , 7-ClO4 and 7-Cl revealed unaltered dibenzoylmethane. Our results therefore indicate that N 3 -ligated Ni( ii ) complexes of unsubstituted diketonate ligands do not exhibit O 2 -dependent aliphatic C–C bond clevage at room temperature, including in the presence of NEt 3 and/or H 2 O. 
    more » « less
  3. This work centers around the nickel complexes derived from two tetrahydrosalen-type proligands: N , N ′-bis(2-hydroxybenzyl)- o -phenylenediamine (H 2 salophan) and N , N ′-bis(2-hydroxy-3-methylbenzyl)- o -phenylenediamine (H 2 salophan_Me). The reaction of H 2 salophan with Ni(OAc) 2 ·4H 2 O generates a dinuclear complex Ni 2 (Hsalophan) 2 (OAc) 2 or Na[Ni 2 (salophan) 2 (OAc)] when NaOH is added to assist ligand deprotonation. The reaction of H 2 salophan_Me with Ni(OAc) 2 ·4H 2 O, however, yields a mononuclear complex Ni(Hsalophan_Me) 2 . Unlike the corresponding salen-type nickel complexes, these tetrahydrosalen-type complexes are paramagentic and air sensitive (in solution). Oxidation by O 2 or peroxides results in dehydrogenation of the ligand backbone to form the salen-type complexes. 
    more » « less
  4. New coordination environments are reported for Np( iii ) and Pu( iii ) based on pilot studies of U( iii ) in 2.2.2-cryptand (crypt). The U( iii )-in-crypt complex, [U(crypt)I 2 ][I], obtained from the reaction between UI 3 and crypt, is treated with Me 3 SiOTf (OTf = O 3 SCF 3 ) in benzene to form the [U(crypt)(OTf) 2 ][OTf] complex. Similarly, the isomorphous Np( iii ) and Pu( iii ) complexes were obtained similarly starting from [AnI 3 (THF) 4 ]. All three complexes (1-An; An = U, Np, Pu) contain an encapsulated actinide in a THF-soluble complex. Absorption spectroscopy and DFT calculations are consistent with 5f 3 U( iii ), 5f 4 Np( iii ), and 5f 5 Pu( iii ) electron configurations. 
    more » « less
  5. A new cyclic molecule incorporating [Mo III (CN) 7 ] 4− has been characterized by single crystal X-ray methods, SQUID magnetometry and theoretical calculations. The wheel molecule [Mo III (CN) 7 ] 6 [Ni(L)] 12 (H 2 O) 6 exhibits ferromagnetic Mo–Ni coupling which did not exist for the previously reported octacyanometallate analogue [Mo IV (CN) 8 ] 6 [Ni(L)] 12 (H 2 O) 6 . These results indicate that known supramolecular architectures incorporating octacyanometallates can be used as platforms for making new molecules incorporating seven-coordinate cyanide precursors. 
    more » « less