skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Minimax Supervised Clustering in the Anisotropic Gaussian Mixture Model: A new take on Robust Interpolation
We study the supervised clustering problem under the two-component anisotropic Gaussian mixture model in high dimensions in the non-asymptotic setting. We first derive a lower and a matching upper bound for the minimax risk of clustering in this framework. We also show that in the high-dimensional regime, the linear discriminant analysis (LDA) classifier turns out to be sub-optimal in a minimax sense. Next, we characterize precisely the risk of regularized supervised least squares classifiers under $$\ell_2$$ regularization. We deduce the fact that the interpolating solution (0 training error solution) may outperform the regularized classifier, under mild assumptions on the covariance structure of the noise. Our analysis also shows that interpolation can be robust to corruption in the covariance of the noise when the signal is aligned with the ``clean'' part of the covariance, for the properly defined notion of alignment. To the best of our knowledge, this peculiar phenomenon has not yet been investigated in the rapidly growing literature related to interpolation. We conclude that interpolation is not only benign but can also be optimal and in some cases robust.  more » « less
Award ID(s):
1908905
PAR ID:
10293465
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Technical report
ISSN:
0109-1344
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bun, Mark (Ed.)
    Machine learning algorithms in high-dimensional settings are highly susceptible to the influence of even a small fraction of structured outliers, making robust optimization techniques essential. In particular, within the ε-contamination model, where an adversary can inspect and replace up to an ε-fraction of the samples, a fundamental open problem is determining the optimal rates for robust stochastic convex optimization (SCO) under such contamination. We develop novel algorithms that achieve minimax-optimal excess risk (up to logarithmic factors) under the ε-contamination model. Our approach improves over existing algorithms, which are not only suboptimal but also require stringent assumptions, including Lipschitz continuity and smoothness of individual sample functions. By contrast, our optimal algorithms do not require these stringent assumptions, assuming only population-level smoothness of the loss. Moreover, our algorithms can be adapted to handle the case in which the covariance parameter is unknown, and can be extended to nonsmooth population risks via convolutional smoothing. We complement our algorithmic developments with a tight information-theoretic lower bound for robust SCO. 
    more » « less
  2. Since its development, the minimax framework has been one of the cornerstones of theoretical statistics, and has contributed to the popularity of many well-known estimators, such as the regularized M-estimators for high-dimensional problems. In this paper, we will first show through the example of sparse Gaussian sequence model, that the theoretical results under the classical minimax framework are insufficient for explaining empirical observations. In particular, both hard and soft thresholding estimators are (asymptotically) minimax, however, in practice they often exhibit sub-optimal performances at various signal-to-noise ratio (SNR) levels. The first contribution of this paper is to demonstrate that this issue can be resolved if the signal-to-noise ratio is taken into account in the construction of the parameter space. We call the resulting minimax framework the signal-to-noise ratio aware minimaxity. The second contribution of this paper is to showcase how one can use higher-order asymptotics to obtain accurate approximations of the SNR-aware minimax risk and discover minimax estimators. The theoretical findings obtained from this refined minimax framework provide new insights and practical guidance for the estimation of sparse signals. 
    more » « less
  3. Daumé III, Hal; Singh, Aarti (Ed.)
    Learning with noisy labels is a common challenge in supervised learning. Existing approaches often require practitioners to specify noise rates, i.e., a set of parameters controlling the severity of label noises in the problem, and the specifications are either assumed to be given or estimated using additional steps. In this work, we introduce a new family of loss functions that we name as peer loss functions, which enables learning from noisy labels and does not require a priori specification of the noise rates. Peer loss functions work within the standard empirical risk minimization (ERM) framework. We show that, under mild conditions, performing ERM with peer loss functions on the noisy data leads to the optimal or a near-optimal classifier as if performing ERM over the clean training data, which we do not have access to. We pair our results with an extensive set of experiments. Peer loss provides a way to simplify model development when facing potentially noisy training labels, and can be promoted as a robust candidate loss function in such situations. 
    more » « less
  4. Abstract Robust estimation is an important problem in statistics which aims at providing a reasonable estimator when the data-generating distribution lies within an appropriately defined ball around an uncontaminated distribution. Although minimax rates of estimation have been established in recent years, many existing robust estimators with provably optimal convergence rates are also computationally intractable. In this paper, we study several estimation problems under a Wasserstein contamination model and present computationally tractable estimators motivated by generative adversarial networks (GANs). Specifically, we analyze the properties of Wasserstein GAN-based estimators for location estimation, covariance matrix estimation and linear regression and show that our proposed estimators are minimax optimal in many scenarios. Finally, we present numerical results which demonstrate the effectiveness of our estimators. 
    more » « less
  5. A popular assumption for out-of-distribution generalization is that the training data comprises subdatasets, each drawn from a distinct distribution; the goal is then to “interpolate” these distributions and “extrapolate” beyond them—this objective is broadly known as domain generalization. A common belief is that ERM can interpolate but not extrapolate and that the latter task is considerably more difficult, but these claims are vague and lack formal justification. In this work, we recast generalization over sub-groups as an online game between a player minimizing risk and an adversary presenting new test distributions. Under an existing notion of inter- and extrapolation based on reweighting of sub-group likelihoods, we rigorously demonstrate that extrapolation is computationally much harder than interpolation, though their statistical complexity is not significantly different. Furthermore, we show that ERM—or a noisy variant—is provably minimax-optimal for both tasks. Our framework presents a new avenue for the formal analysis of domain generalization algorithms which may be of independent interest. 
    more » « less