skip to main content

Title: Rounding in the Rings
In this work, we conduct a comprehensive study on establishing hardness reductions for (Module) Learning with Rounding over rings (RLWR). Towards this, we present an algebraic framework of LWR, inspired by a recent work of Peikert and Pepin (TCC ’19). Then we show a search-to-decision reduction for Ring-LWR, generalizing a result in the plain LWR setting by Bogdanov et al. (TCC ’15). Finally, we show a reduction from Ring-LWE to Module Ring-LWR (even for leaky secrets), generalizing the plain LWE to LWR reduction by Alwen et al. (Crypto ’13). One of our central techniques is a new ring leftover hash lemma, which might be of independent interests.
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Zero-knowledge succinct arguments of knowledge (zkSNARKs) enable efficient privacy-preserving proofs of membership for general NP languages. Our focus in this work is on post-quantum zkSNARKs, with a focus on minimizing proof size. Currently, there is a 1000x gap in the proof size between the best pre-quantum constructions and the best post-quantum ones. Here, we develop and implement new lattice-based zkSNARKs in the designated-verifier preprocessing model. With our construction, after an initial preprocessing step, a proof for an NP relation of size 2^20 is just over 16 KB. Our proofs are 10.3x shorter than previous post-quantum zkSNARKs for general NP languages.more »Compared to previous lattice-based zkSNARKs (also in the designated-verifier preprocessing model), we obtain a 42x reduction in proof size and a 60x reduction in the prover's running time, all while achieving a much higher level of soundness. Compared to the shortest pre-quantum zkSNARKs by Groth (Eurocrypt 2016), the proof size in our lattice-based construction is 131x longer, but both the prover and the verifier are faster (by 1.2x and 2.8x, respectively). Our construction follows the general blueprint of Bitansky et al. (TCC 2013) and Boneh et al. (Eurocrypt 2017) of combining a linear probabilistically checkable proof (linear PCP) together with a linear-only vector encryption scheme. We develop a concretely-efficient lattice-based instantiation of this compiler by considering quadratic extension fields of moderate characteristic and using linear-only vector encryption over rank-2 module lattices.« less
  2. We introduce a continuous analogue of the Learning with Errors (LWE) problem, which we name CLWE. We give a polynomial-time quantum reduction from worst-case lattice problems to CLWE, showing that CLWE enjoys similar hardness guarantees to those of LWE. Alternatively, our result can also be seen as opening new avenues of (quantum) attacks on lattice problems. Our work resolves an open problem regarding the computational complexity of learning mixtures of Gaussians without separability assumptions (Diakonikolas 2016, Moitra 2018). As an additional motivation, (a slight variant of) CLWE was considered in the context of robust machine learning (Diakonikolas et al. FOCSmore »2017), where hardness in the statistical query (SQ) model was shown; our work addresses the open question regarding its computational hardness (Bubeck et al. ICML 2019).« less
  3. Abstract The leftover hash lemma (LHL) is used in the analysis of various lattice-based cryptosystems, such as the Regev and Dual-Regev encryption schemes as well as their leakage-resilient counterparts. The LHL does not hold in the ring setting, when the ring is far from a field, which is typical for efficient cryptosystems. Lyubashevsky et al . (Eurocrypt ’13) proved a “regularity lemma,” which can be used instead of the LHL, but applies only for Gaussian inputs. This is in contrast to the LHL, which applies when the input is drawn from any high min-entropy distribution. Our work presents an approachmore »for generalizing the “regularity lemma” of Lyubashevsky et al . to certain conditional distributions. We assume the input was sampled from a discrete Gaussian distribution and consider the induced distribution, given side-channel leakage on the input. We present three instantiations of our approach, proving that the regularity lemma holds for three natural conditional distributions.« less
  4. In this work, we study the fascinating notion of output-compressing randomized encodings for Turing Machines, in a shared randomness model. In this model, the encoder and decoder have access to a shared random string, and the efficiency requirement is, the size of the encoding must be independent of the running time and output length of the Turing Machine on the given input, while the length of the shared random string is allowed to grow with the length of the output. We show how to construct output-compressing randomized encodings for Turing machines in the shared randomness model, assuming iO for circuitsmore »and any assumption in the set {LWE, DDH, N𝑡ℎ Residuosity}. We then show interesting implications of the above result to basic feasibility questions in the areas of secure multiparty computation (MPC) and indistinguishability obfuscation (iO): 1.Compact MPC for Turing Machines in the Random Oracle Model. In the context of MPC, we consider the following basic feasibility question: does there exist a malicious-secure MPC protocol for Turing Machines whose communication complexity is independent of the running time and output length of the Turing Machine when executed on the combined inputs of all parties? We call such a protocol as a compact MPC protocol. Hubácek and Wichs [HW15] showed via an incompressibility argument, that, even for the restricted setting of circuits, it is impossible to construct a malicious secure two party computation protocol in the plain model where the communication complexity is independent of the output length. In this work, we show how to evade this impossibility by compiling any (non-compact) MPC protocol in the plain model to a compact MPC protocol for Turing Machines in the Random Oracle Model, assuming output-compressing randomized encodings in the shared randomness model. 2. Succinct iO for Turing Machines in the Shared Randomness Model. In all existing constructions of iO for Turing Machines, the size of the obfuscated program grows with a bound on the input length. In this work, we show how to construct an iO scheme for Turing Machines in the shared randomness model where the size of the obfuscated program is independent of a bound on the input length, assuming iO for circuits and any assumption in the set {LWE, DDH, N𝑡ℎ Residuosity}.« less
  5. Indistinguishability obfuscation, introduced by [Barak et. al. Crypto2001], aims to compile programs into unintelligible ones while preserving functionality. It is a fascinating and powerful object that has been shown to enable a host of new cryptographic goals and beyond. However, constructions of indistinguishability obfuscation have remained elusive, with all other proposals relying on heuristics or newly conjectured hardness assumptions. In this work, we show how to construct indistinguishability obfuscation from subexponential hardness of four well-founded assumptions. We prove: Informal Theorem: Let 𝜏∈ (0,∞), 𝛿∈ (0,1), 𝜖∈ (0,1) be arbitrary constants. Assume sub-exponential security of the following assumptions: - the Learningmore »With Errors (LWE) assumption with subexponential modulus-to-noise ratio 2^{𝑘^𝜖} and noises of magnitude polynomial in 𝑘,where 𝑘 is the dimension of the LWE secret, - the Learning Parity with Noise (LPN) assumption over general prime fields Z𝑝 with polynomially many LPN samples and error rate 1/ℓ^𝛿 ,where ℓ is the dimension of the LPN secret, - the existence of a Boolean Pseudo-Random Generator (PRG) in NC0 with stretch 𝑛^{1+𝜏}, where 𝑛 is the length of the PRG seed, - the Decision Linear (DLIN) assumption on symmetric bilinear groups of prime order. Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size circuits exists. Further, assuming only polynomial security of the aforementioned assumptions, there exists collusion resistant public-key functional encryption for all polynomial-size circuits.« less