skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lattice Problems beyond Polynomial Time
We study the complexity of lattice problems in a world where algorithms, reductions, and protocols can run in superpolynomial time, revisiting four foundational results: two worst-case to average-case reductions and two protocols. We also show a novel protocol. 1. We prove that secret-key cryptography exists if O˜(n‾√)-approximate SVP is hard for 2εn-time algorithms. I.e., we extend to our setting (Micciancio and Regev's improved version of) Ajtai's celebrated polynomial-time worst-case to average-case reduction from O˜(n)-approximate SVP to SIS. 2. We prove that public-key cryptography exists if O˜(n)-approximate SVP is hard for 2εn-time algorithms. This extends to our setting Regev's celebrated polynomial-time worst-case to average-case reduction from O˜(n1.5)-approximate SVP to LWE. In fact, Regev's reduction is quantum, but ours is classical, generalizing Peikert's polynomial-time classical reduction from O˜(n2)-approximate SVP. 3. We show a 2εn-time coAM protocol for O(1)-approximate CVP, generalizing the celebrated polynomial-time protocol for O(n/logn‾‾‾‾‾‾‾√)-CVP due to Goldreich and Goldwasser. These results show complexity-theoretic barriers to extending the recent line of fine-grained hardness results for CVP and SVP to larger approximation factors. (This result also extends to arbitrary norms.) 4. We show a 2εn-time co-non-deterministic protocol for O(logn‾‾‾‾‾√)-approximate SVP, generalizing the (also celebrated!) polynomial-time protocol for O(n‾√)-CVP due to Aharonov and Regev. 5. We give a novel coMA protocol for O(1)-approximate CVP with a 2εn-time verifier. All of the results described above are special cases of more general theorems that achieve time-approximation factor tradeoffs.  more » « less
Award ID(s):
2122230
PAR ID:
10428125
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Servedio, Rocco
Date Published:
Journal Name:
ACM Symposium on Theory of Computing
Page Range / eLocation ID:
1516 to 1526
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hazay, Carmit; Stam, Martijn (Ed.)
    We study the computational problem of finding a shortest non-zero vector in a rotation of ℤ𝑛 , which we call ℤ SVP. It has been a long-standing open problem to determine if a polynomial-time algorithm for ℤ SVP exists, and there is by now a beautiful line of work showing how to solve it efficiently in certain very special cases. However, despite all of this work, the fastest known algorithm that is proven to solve ℤ SVP is still simply the fastest known algorithm for solving SVP (i.e., the problem of finding shortest non-zero vectors in arbitrary lattices), which runs in 2𝑛+𝑜(𝑛) time. We therefore set aside the (perhaps impossible) goal of finding an efficient algorithm for ℤ SVP and instead ask what else we can say about the problem. E.g., can we find any non-trivial speedup over the best known SVP algorithm? And, if ℤ SVP actually is hard, then what consequences would follow? Our results are as follows. We show that ℤ SVP is in a certain sense strictly easier than SVP on arbitrary lattices. In particular, we show how to reduce ℤ SVP to an approximate version of SVP in the same dimension (in fact, even to approximate unique SVP, for any constant approximation factor). Such a reduction seems very unlikely to work for SVP itself, so we view this as a qualitative separation of ℤ SVP from SVP. As a consequence of this reduction, we obtain a 2𝑛/2+𝑜(𝑛) -time algorithm for ℤ SVP, i.e., the first non-trivial speedup over the best known algorithm for SVP on general lattices. (In fact, this reduction works for a more general class of lattices—semi-stable lattices with not-too-large 𝜆1 .) We show a simple public-key encryption scheme that is secure if (an appropriate variant of) ℤ SVP is actually hard. Specifically, our scheme is secure if it is difficult to distinguish (in the worst case) a rotation of ℤ𝑛 from either a lattice with all non-zero vectors longer than 𝑛/log𝑛‾‾‾‾‾‾‾√ or a lattice with smoothing parameter significantly smaller than the smoothing parameter of ℤ𝑛 . The latter result has an interesting qualitative connection with reverse Minkowski theorems, which in some sense say that “ℤ𝑛 has the largest smoothing parameter.” We show a distribution of bases 𝐁 for rotations of ℤ𝑛 such that, if ℤ SVP is hard for any input basis, then ℤ SVP is hard on input 𝐁 . This gives a satisfying theoretical resolution to the problem of sampling hard bases for ℤ𝑛 , which was studied by Blanks and Miller [9]. This worst-case to average-case reduction is also crucially used in the analysis of our encryption scheme. (In recent independent work that appeared as a preprint before this work, Ducas and van Woerden showed essentially the same thing for general lattices [15], and they also used this to analyze the security of a public-key encryption scheme. Similar ideas also appeared in [5, 11, 20] in different contexts.) We perform experiments to determine how practical basis reduction performs on bases of ℤ𝑛 that are generated in different ways and how heuristic sieving algorithms perform on ℤ𝑛 . Our basis reduction experiments complement and add to those performed by Blanks and Miller, as we work with a larger class of algorithms (i.e., larger block sizes) and study the “provably hard” distribution of bases described above. Our sieving experiments confirm that heuristic sieving algorithms perform as expected on ℤ𝑛 . 
    more » « less
  2. We show a simple reduction which demonstrates the cryptographic hardness of learning a single periodic neuron over isotropic Gaussian distributions in the pres- ence of noise. More precisely, our reduction shows that any polynomial-time algorithm (not necessarily gradient-based) for learning such functions under small noise implies a polynomial-time quantum algorithm for solving worst-case lattice problems, whose hardness form the foundation of lattice-based cryptography. Our core hard family of functions, which are well-approximated by one-layer neural networks, take the general form of a univariate periodic function applied to an affine projection of the data. These functions have appeared in previous seminal works which demonstrate their hardness against gradient-based (Shamir’18), and Statisti- cal Query (SQ) algorithms (Song et al.’17). We show that if (polynomially) small noise is added to the labels, the intractability of learning these functions applies to all polynomial-time algorithms, beyond gradient-based and SQ algorithms, under the aforementioned cryptographic assumptions. Moreover, we demonstrate the necessity of noise in the hardness result by designing a polynomial-time algorithm for learning certain families of such functions under exponentially small adversarial noise. Our proposed algorithm is not a gradient-based or an SQ algorithm, but is rather based on the celebrated Lenstra-Lenstra-Lovász (LLL) lattice basis reduction algorithm. Furthermore, in the absence of noise, this algorithm can be directly applied to solve CLWE detection (Bruna et al.’21) and phase retrieval with an optimal sample complexity of d + 1 samples. In the former case, this improves upon the quadratic-in-d sample complexity required in (Bruna et al.’21). 
    more » « less
  3. null (Ed.)
    Abstract We show a simple reduction which demonstrates the cryptographic hardness of learning a single periodic neuron over isotropic Gaussian distributions in the presence of noise. More precisely, our reduction shows that any polynomial-time algorithm (not necessarily gradientbased) for learning such functions under small noise implies a polynomial-time quantum algorithm for solving worst-case lattice problems, whose hardness form the foundation of lattice-based cryptography. Our core hard family of functions, which are well-approximated by one-layer neural networks, take the general form of a univariate periodic function applied to an affine projection of the data. These functions have appeared in previous seminal works which demonstrate their hardness against gradient-based (Shamir’18), and Statistical Query (SQ) algorithms (Song et al.’17). We show that if (polynomially) small noise is added to the labels, the intractability of learning these functions applies to all polynomial-time algorithms, beyond gradient-based and SQ algorithms, under the aforementioned cryptographic assumptions. Moreover, we demonstrate the necessity of noise in the hardness result by designing a polynomial-time algorithm for learning certain families of such functions under exponentially small adversarial noise. Our proposed algorithm is not a gradient-based or an SQ algorithm, but is rather based on the celebrated Lenstra-Lenstra-Lovász (LLL) lattice basis reduction algorithm. Furthermore, in the absence of noise, this algorithm can be directly applied to solve CLWE detection (Bruna et al.’21) and phase retrieval with an optimal sample complexity of d + 1 samples. In the former case, this improves upon the quadratic-in-d sample complexity required in (Bruna et al.’21). 
    more » « less
  4. null (Ed.)
    We prove that the equivalence of two fundamental problems in the theory of computing. For every polynomial t(n) ≥ (1 + ε)n, ε > 0, the following are equivalent: • One-way functions exists (which in turn is equivalent to the existence of secure private-key encryption schemes, digital signatures, pseudorandom generators, pseudorandom functions, commitment schemes, and more); • t-time bounded Kolmogorov Complexity, Kt, is mildly hard-on-average (i.e., there exists a polynomial p(n) > 0 such that no PPT algorithm can compute Kt, for more than a 1 − 1/p(n) fraction of n-bit strings). In doing so, we present the first natural, and well-studied, computational problem characterizing the feasibility of the central private-key primitives and protocols in Cryptography. 
    more » « less
  5. We give new upper and lower bounds on the power of several restricted classes of arbitrary-order read-once branching programs (ROBPs) and standard-order ROBPs (SOBPs) that have received significant attention in the literature on pseudorandomness for space-bounded computation. - Regular SOBPs of length n and width ⌊w(n+1)/2⌋ can exactly simulate general SOBPs of length n and width w, and moreover an n/2-o(n) blow-up in width is necessary for such a simulation. Our result extends and simplifies prior average-case simulations (Reingold, Trevisan, and Vadhan (STOC 2006), Bogdanov, Hoza, Prakriya, and Pyne (CCC 2022)), in particular implying that weighted pseudorandom generators (Braverman, Cohen, and Garg (SICOMP 2020)) for regular SOBPs of width poly(n) or larger automatically extend to general SOBPs. Furthermore, our simulation also extends to general (even read-many) oblivious branching programs. - There exist natural functions computable by regular SOBPs of constant width that are average-case hard for permutation SOBPs of exponential width. Indeed, we show that Inner-Product mod 2 is average-case hard for arbitrary-order permutation ROBPs of exponential width. - There exist functions computable by constant-width arbitrary-order permutation ROBPs that are worst-case hard for exponential-width SOBPs. - Read-twice permutation branching programs of subexponential width can simulate polynomial-width arbitrary-order ROBPs. 
    more » « less