skip to main content

This content will become publicly available on November 12, 2022

Title: Shorter and Faster Post-Quantum Designated-Verifier zkSNARKs from Lattices
Zero-knowledge succinct arguments of knowledge (zkSNARKs) enable efficient privacy-preserving proofs of membership for general NP languages. Our focus in this work is on post-quantum zkSNARKs, with a focus on minimizing proof size. Currently, there is a 1000x gap in the proof size between the best pre-quantum constructions and the best post-quantum ones. Here, we develop and implement new lattice-based zkSNARKs in the designated-verifier preprocessing model. With our construction, after an initial preprocessing step, a proof for an NP relation of size 2^20 is just over 16 KB. Our proofs are 10.3x shorter than previous post-quantum zkSNARKs for general NP languages. Compared to previous lattice-based zkSNARKs (also in the designated-verifier preprocessing model), we obtain a 42x reduction in proof size and a 60x reduction in the prover's running time, all while achieving a much higher level of soundness. Compared to the shortest pre-quantum zkSNARKs by Groth (Eurocrypt 2016), the proof size in our lattice-based construction is 131x longer, but both the prover and the verifier are faster (by 1.2x and 2.8x, respectively). Our construction follows the general blueprint of Bitansky et al. (TCC 2013) and Boneh et al. (Eurocrypt 2017) of combining a linear probabilistically checkable proof (linear PCP) together with more » a linear-only vector encryption scheme. We develop a concretely-efficient lattice-based instantiation of this compiler by considering quadratic extension fields of moderate characteristic and using linear-only vector encryption over rank-2 module lattices. « less
Authors:
; ;
Award ID(s):
2151131 1917414
Publication Date:
NSF-PAR ID:
10310224
Journal Name:
ACM Conference on Computer and Communications Security (CCS)
Sponsoring Org:
National Science Foundation
More Like this
  1. Symbolic methods have been used extensively for proving security of cryptographic protocols in the Dolev-Yao model, and more recently for proving security of cryptographic primitives and constructions in the computational model. However, existing methods for proving security of cryptographic constructions in the computational model often require significant expertise and interaction, or are fairly limitedin scope and expressivity. This paper introduces a symbolic approach for proving security of cryptographic constructions based on the Learning With Errors assumption (Regev, STOC 2005). Such constructions are instances of lattice-based cryptography and are extremely important due to their potential role in post-quantum cryptography. Following (Barthe,more »Gregoire and Schmidt, CCS 2015), our approach combines a computational logic and deducibility problems—a standard tool for representing the adversary’s knowledge, the Dolev-Yao model. The computational logic is used to capture (indistinguishability-based) security notions and drive the security proofs whereas deducibility problems are used as side-conditions to control that rules of the logic are applied correctly. We then use AutoLWE, an implementation of the logic, to deliver very short or even automatic proofs of several emblematic constructions, including CPAPKE (Gentry et al., STOC 2008), (Hierarchical) Identity-Based Encryption (Agrawal et al. Eurocrypt 2010), Inner Product Encryption (Agrawal et al. Asiacrypt 2011), CCA-PKE (Micciancio et al., Eurocrypt 2012). The main technical novelty beyond AutoLWE is a set of (semi-)decision procedures for deducibility problems, using extensions of Grobner basis computations for subalgebras in the non-commutative setting (instead of ideals in the commutative setting). Our procedures cover the theory of matrices, which is required for lattice-based assumption, as well as the theory of non-commutative rings, fields, and Diffie-Hellman exponentiation, in its standard, bilinear and multilinear forms. Additionally, AutoLWE supports oracle-relative assumptions, which are used specifically to apply (advanced forms of) the Leftover Hash Lemma, an information-theoretical tool widely used in lattice-based proofs.« less
  2. Symbolic methods have been used extensively for proving security of cryptographic protocols in the Dolev-Yao model, and more recently for proving security of cryptographic primitives and constructions in the computational model. However, existing methods for proving security of cryptographic constructions in the computational model often require significant expertise and interaction, or are fairly limited in scope and expressivity. This paper introduces a symbolic approach for proving security of cryptographic constructions based on the Learning With Errors assumption (Regev, STOC 2005). Such constructions are instances of lattice-based cryptography and are extremely important due to their potential role in post-quantum cryptography. Followingmore »(Barthe, Gre ́goire and Schmidt, CCS 2015), our approach combines a computational logic and deducibility problems—a standard tool for representing the adversary’s knowledge, the Dolev-Yao model. The computational logic is used to capture (indistinguishability-based) security notions and drive the security proofs whereas deducibility problems are used as side-conditions to control that rules of the logic are applied correctly. We then use AutoLWE, an implementation of the logic, to deliver very short or even automatic proofs of several emblematic constructions, including CPA- PKE (Gentry et al., STOC 2008), (Hierarchical) Identity-Based Encryption (Agrawal et al. Eurocrypt 2010), Inner Product Encryption (Agrawal et al. Asiacrypt 2011), CCA-PKE (Micciancio et al., Eurocrypt 2012). The main technical novelty beyond AutoLWE is a set of (semi-)decision procedures for deducibility problems, using extensions of Grobner basis computations for subalgebras in the (non-)commutative setting (instead of ideals in the commutative setting). Our procedures cover the theory of matrices, which is required for lattice-based assumption, as well as the theory of non-commutative rings, fields, and Diffie-Hellman exponentiation, in its standard, bilinear and multilinear forms. Additionally, AutoLWE supports oracle-relative assumptions, which are used specifically to apply (advanced forms of) the Leftover Hash Lemma, an information-theoretical tool widely used in lattice-based proofs.« less
  3. We provide a modified version of the Ligero sublinear zero knowledge proof system for arithmetic circuits provided by Ames et. al. (CCS ‘17). Our modification "BooLigero" tailors Ligero for use in Boolean circuits to achieve a significant improvement in proof size. Although the original Ligero system could be used for Boolean circuits, Ligero generally requires allocating an entire field element to represent a single bit on a wire in a Boolean circuit. In contrast, our system performs operations over words of bits, allowing a proof size savings of between O(log(|F|)^1/4) and O(log(|F|)^1/2) compared to Ligero, where F is the fieldmore »that leads to the optimal proof size in original Ligero. We achieve improvements in proof size of approximately 1.1-1.6x for SHA-2 and 1.7-2.8x for SHA-3. In addition to checking constraints of standard Boolean operations such as AND, XOR, and NOT over words, BooLigero also supports several other constraints such as multiplication in GF(2^w), bit masking, bit rearrangement within and across words, and bitwise outer product. Like Ligero, construction requires no trusted setup and no computational assumptions, which is ideal for blockchain applications. It is plausibly post-quantum secure in the standard model. Furthermore, it is public-coin, perfect honest-verifier zero knowledge, and can be made non-interactive in the random oracle model using the Fiat-Shamir transform.« less
  4. Pass, Rafael ; Pietrzak, Krzysztof (Ed.)
    In the backdoored random-oracle (BRO) model, besides access to a random function H , adversaries are provided with a backdoor oracle that can compute arbitrary leakage functions f of the function table of H . Thus, an adversary would be able to invert points, find collisions, test for membership in certain sets, and more. This model was introduced in the work of Bauer, Farshim, and Mazaheri (Crypto 2018) and extends the auxiliary-input idealized models of Unruh (Crypto 2007), Dodis, Guo, and Katz (Eurocrypt 2017), Coretti et al. (Eurocrypt 2018), and Coretti, Dodis, and Guo (Crypto 2018). It was shown thatmore »certain security properties, such as one-wayness, pseudorandomness, and collision resistance can be re-established by combining two independent BROs, even if the adversary has access to both backdoor oracles. In this work we further develop the technique of combining two or more independent BROs to render their backdoors useless in a more general sense. More precisely, we study the question of building an indifferentiable and backdoor-free random function by combining multiple BROs. Achieving full indifferentiability in this model seems very challenging at the moment. We however make progress by showing that the xor combiner goes well beyond security against preprocessing attacks and offers indifferentiability as long as the adaptivity of queries to different backdoor oracles remains logarithmic in the input size of the BROs. We even show that an extractor-based combiner of three BROs can achieve indifferentiability with respect to a linear adaptivity of backdoor queries. Furthermore, a natural restriction of our definition gives rise to a notion of indifferentiability with auxiliary input, for which we give two positive feasibility results. To prove these results we build on and refine techniques by Göös et al. (STOC 2015) and Kothari et al. (STOC 2017) for decomposing distributions with high entropy into distributions with more structure and show how they can be applied in the more involved adaptive settings.« less
  5. Tessaro, Stefano (Ed.)
    A Proof of Sequential Work (PoSW) allows a prover to convince a resource-bounded verifier that the prover invested a substantial amount of sequential time to perform some underlying computation. PoSWs have many applications including time-stamping, blockchain design, and universally verifiable CPU benchmarks. Mahmoody, Moran, and Vadhan (ITCS 2013) gave the first construction of a PoSW in the random oracle model though the construction relied on expensive depth-robust graphs. In a recent breakthrough, Cohen and Pietrzak (EUROCRYPT 2018) gave an efficient PoSW construction that does not require expensive depth-robust graphs. In the classical parallel random oracle model, it is straightforward tomore »argue that any successful PoSW attacker must produce a long ℋ-sequence and that any malicious party running in sequential time T-1 will fail to produce an ℋ-sequence of length T except with negligible probability. In this paper, we prove that any quantum attacker running in sequential time T-1 will fail to produce an ℋ-sequence except with negligible probability - even if the attacker submits a large batch of quantum queries in each round. The proof is substantially more challenging and highlights the power of Zhandry’s recent compressed oracle technique (CRYPTO 2019). We further extend this result to establish post-quantum security of a non-interactive PoSW obtained by applying the Fiat-Shamir transform to Cohen and Pietrzak’s efficient construction (EUROCRYPT 2018).« less