Symbolic methods have been used extensively for proving security of cryptographic protocols in the Dolev-Yao model, and more recently for proving security of cryptographic primitives and constructions in the computational model. However, existing methods for proving security of cryptographic constructions in the computational model often require significant expertise and interaction, or are fairly limitedin scope and expressivity. This paper introduces a symbolic approach for proving security of cryptographic constructions based on the Learning With Errors assumption (Regev, STOC 2005). Such constructions are instances of lattice-based cryptography and are extremely important due to their potential role in post-quantum cryptography. Following (Barthe, Gregoire and Schmidt, CCS 2015), our approach combines a computational logic and deducibility problems—a standard tool for representing the adversary’s knowledge, the Dolev-Yao model. The computational logic is used to capture (indistinguishability-based) security notions and drive the security proofs whereas deducibility problems are used as side-conditions to control that rules of the logic are applied correctly. We then use AutoLWE, an implementation of the logic, to deliver very short or even automatic proofs of several emblematic constructions, including CPAPKE (Gentry et al., STOC 2008), (Hierarchical) Identity-Based Encryption (Agrawal et al. Eurocrypt 2010), Inner Product Encryption (Agrawal et al. Asiacrypt 2011), CCA-PKE (Micciancio et al., Eurocrypt 2012). The main technical novelty beyond AutoLWE is a set of (semi-)decision procedures for deducibility problems, using extensions of Grobner basis computations for subalgebras in the non-commutative setting (instead of ideals in the commutative setting). Our procedures cover the theory of matrices, which is required for lattice-based assumption, as well as the theory of non-commutative rings, fields, and Diffie-Hellman exponentiation, in its standard, bilinear and multilinear forms. Additionally, AutoLWE supports oracle-relative assumptions, which are used specifically to apply (advanced forms of) the Leftover Hash Lemma, an information-theoretical tool widely used in lattice-based proofs.
more »
« less
Shorter and Faster Post-Quantum Designated-Verifier zkSNARKs from Lattices
Zero-knowledge succinct arguments of knowledge (zkSNARKs) enable efficient privacy-preserving proofs of membership for general NP languages. Our focus in this work is on post-quantum zkSNARKs, with a focus on minimizing proof size. Currently, there is a 1000x gap in the proof size between the best pre-quantum constructions and the best post-quantum ones. Here, we develop and implement new lattice-based zkSNARKs in the designated-verifier preprocessing model. With our construction, after an initial preprocessing step, a proof for an NP relation of size 2^20 is just over 16 KB. Our proofs are 10.3x shorter than previous post-quantum zkSNARKs for general NP languages. Compared to previous lattice-based zkSNARKs (also in the designated-verifier preprocessing model), we obtain a 42x reduction in proof size and a 60x reduction in the prover's running time, all while achieving a much higher level of soundness. Compared to the shortest pre-quantum zkSNARKs by Groth (Eurocrypt 2016), the proof size in our lattice-based construction is 131x longer, but both the prover and the verifier are faster (by 1.2x and 2.8x, respectively). Our construction follows the general blueprint of Bitansky et al. (TCC 2013) and Boneh et al. (Eurocrypt 2017) of combining a linear probabilistically checkable proof (linear PCP) together with a linear-only vector encryption scheme. We develop a concretely-efficient lattice-based instantiation of this compiler by considering quadratic extension fields of moderate characteristic and using linear-only vector encryption over rank-2 module lattices.
more »
« less
- PAR ID:
- 10310224
- Date Published:
- Journal Name:
- ACM Conference on Computer and Communications Security (CCS)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Symbolic methods have been used extensively for proving security of cryptographic protocols in the Dolev-Yao model, and more recently for proving security of cryptographic primitives and constructions in the computational model. However, existing methods for proving security of cryptographic constructions in the computational model often require significant expertise and interaction, or are fairly limited in scope and expressivity. This paper introduces a symbolic approach for proving security of cryptographic constructions based on the Learning With Errors assumption (Regev, STOC 2005). Such constructions are instances of lattice-based cryptography and are extremely important due to their potential role in post-quantum cryptography. Following (Barthe, Gre ́goire and Schmidt, CCS 2015), our approach combines a computational logic and deducibility problems—a standard tool for representing the adversary’s knowledge, the Dolev-Yao model. The computational logic is used to capture (indistinguishability-based) security notions and drive the security proofs whereas deducibility problems are used as side-conditions to control that rules of the logic are applied correctly. We then use AutoLWE, an implementation of the logic, to deliver very short or even automatic proofs of several emblematic constructions, including CPA- PKE (Gentry et al., STOC 2008), (Hierarchical) Identity-Based Encryption (Agrawal et al. Eurocrypt 2010), Inner Product Encryption (Agrawal et al. Asiacrypt 2011), CCA-PKE (Micciancio et al., Eurocrypt 2012). The main technical novelty beyond AutoLWE is a set of (semi-)decision procedures for deducibility problems, using extensions of Grobner basis computations for subalgebras in the (non-)commutative setting (instead of ideals in the commutative setting). Our procedures cover the theory of matrices, which is required for lattice-based assumption, as well as the theory of non-commutative rings, fields, and Diffie-Hellman exponentiation, in its standard, bilinear and multilinear forms. Additionally, AutoLWE supports oracle-relative assumptions, which are used specifically to apply (advanced forms of) the Leftover Hash Lemma, an information-theoretical tool widely used in lattice-based proofs.more » « less
-
We construct a succinct classical argument system for QMA, the quantum analogue of NP, from generic and standard cryptographic assumptions. Previously, building on the prior work of Mahadev (FOCS '18), Bartusek et al. (CRYPTo ‘22) also constructed a succinct classical argument system for Q M A. However, their construction relied on post-quantumly secure indistinguishability obfuscation, a very strong primitive which is not known from standard cryptographic assumptions. In contrast, the primitives we use (namely, collapsing hash functions and a mild version of quantum homomorphic encryption) are much weaker and are implied by standard assumptions such as LWE. Our protocol is constructed using a general transformation which was designed by Kalai et al. (STOC '23) as a candidate method to compile any quantum nonlocal game into an argument system. Our main technical contribution is to analyze the soundness of this transformation when it is applied to a succinct self-test for Pauli measurements on maximally entangled states, the latter of which is a key component in the proof of MIP * = R E in Quantum complexity.more » « less
-
Abstract Zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs) are cryptographic protocols that offer efficient and privacy-preserving means of verifying NP language relations and have drawn considerable attention for their appealing applications, e.g., verifiable computation and anonymous payment protocol. Compared with the pre-quantum case, the practicability of this primitive in the post-quantum setting is still unsatisfactory, especially for the space complexity. To tackle this issue, this work seeks to enhance the efficiency and compactness of lattice-based zk-SNARKs, including proof length and common reference string (CRS) length. In this paper, we develop the framework of square span program-based SNARKs and design new zk-SNARKs over cyclotomic rings. Compared with previous works, our construction is without parallel repetition and achieves shorter proof and CRS lengths than previous lattice-based zk-SNARK schemes. Particularly, the proof length of our scheme is around$$23.3\%$$ smaller than the recent shortest lattice-based zk-SNARKs by Ishai et al. (in: Proceedings of the 2021 ACM SIGSAC conference on computer and communications security, pp 212–234, 2021), and the CRS length is$$3.6\times$$ smaller. Our constructions follow the framework of Gennaro et al. (in: Proceedings of the 2018 ACM SIGSAC conference on computer and communications security, pp 556–573, 2018), and adapt it to the ring setting by slightly modifying the knowledge assumptions. We develop concretely small constructions by using module-switching and key-switching procedures in a novel way.more » « less
-
Cas Cremers and Engin Kirda (Ed.)Vector Oblivious Linear Evaluation (VOLE) supports fast and scalable interactive Zero-Knowledge (ZK) proofs. Despite recent improvements to VOLE-based ZK, compiling proof statements to a control-flow oblivious form (e.g., a circuit) continues to lead to expensive proofs. One useful setting where this inefficiency stands out is when the statement is a disjunction of clauses $$\mathcal{L}_1 \lor \cdots \lor \mathcal{L}_B$$. Typically, ZK requires paying the price to handle all $$B$$ branches. Prior works have shown how to avoid this price in communication, but not in computation. Our main result, $$\mathsf{Batchman}$$, is asymptotically and concretely efficient VOLE-based ZK for batched disjunctions, i.e. statements containing $$R$$ repetitions of the same disjunction. This is crucial for, e.g., emulating CPU steps in ZK. Our prover and verifier complexity is only $$\bigO(RB+R|\C|+B|\C|)$$, where $$|\C|$$ is the maximum circuit size of the $$B$$ branches. Prior works' computation scales in $$RB|\C|$$. For non-batched disjunctions, we also construct a VOLE-based ZK protocol, $$\mathsf{Robin}$$, which is (only) communication efficient. For small fields and for statistical security parameter $$\lambda$$, this protocol's communication improves over the previous state of the art ($$\mathsf{Mac'n'Cheese}$$, Baum et al., CRYPTO'21) by up to factor $$\lambda$$. Our implementation outperforms prior state of the art. E.g., we achieve up to $$6\times$$ improvement over $$\mathsf{Mac'n'Cheese}$$ (Boolean, single disjunction), and for arithmetic batched disjunctions our experiments show we improve over $$\mathsf{QuickSilver}$$ (Yang et al., CCS'21) by up to $$70\times$$ and over $$\mathsf{AntMan}$$ (Weng et al., CCS'22) by up to $$36\times$$.more » « less
An official website of the United States government

