skip to main content

Title: Incident-angle dependent operando XAS cell design: investigation of the electrochemical cells under operating conditions at various incidence angles
An operando characterization of electrode materials under electrochemical reaction conditions is important for their further development. X-ray absorption spectroscopy (XAS) presents a unique opportunity in this regard as the absence of a vacuum chamber in this technique makes it possible to collect spectroscopy data using user-designed operando cells. In the current study, the design and performance of an operando XAS cell are evaluated for characterizing solid oxide electrolysis cell working electrodes under a reaction environment that mimics high-temperature ammonia production conditions from H 2 O and N 2 . Sr 2 FeMoO 6−x N x (SFMON)-type double perovskite oxides were used as the cathode materials in these experiments. The operando cell contained a sample stage with a turnable head so that XAS data can be collected at different angles between the electrode and the X-ray beam with an accuracy of 0.5°. The mechanism to adjust the angle of incidence of the beam on the sample allows control over the depth of penetration of the X-ray photons into the electrode. At low angles, it becomes possible to collect surface sensitive data, which is of great importance as the electrochemical processes are believed to take place on the surface of the electrodes. more » Sr K-edge and Fe K-edge XAS collected at 2° and 45° angles showed that these the oxidation state changes occurring in these elements are different in the near-surface region compared to the bulk of the electrode. Such an ability to distinguish between the surface and bulk properties of the electrode during real reaction environment will help to understand the underlying phenomena better, which will enable electrode design targeted towards the reactions of interest. « less
Authors:
; ; ; ; ;
Award ID(s):
1932638
Publication Date:
NSF-PAR ID:
10293500
Journal Name:
RSC Advances
Volume:
11
Issue:
12
Page Range or eLocation-ID:
6456 to 6463
ISSN:
2046-2069
Sponsoring Org:
National Science Foundation
More Like this
  1. The solvation shell structures of Ca 2+ in aqueous and organic solutions probed by calcium L-edge soft X-ray absorption spectroscopy (XAS) and DFT/MD simulations show the coordination number of Ca 2+ to be negatively correlated with the electrolyte concentration and the steric hindrance of the solvent molecule. In this work, the calcium L-edge soft XAS demonstrates its sensitivity to the surrounding chemical environment. Additionally, the total electron yield (TEY) mode is surface sensitive because the electron penetration depth is limited to a few nanometers. Thus this study shows its implications for future battery studies, especially for probing the electrolyte/electrode interface for electrochemical reactions under in situ /operando conditions.
  2. Sr(Ti 1−x Fe x )O 3−δ (STF) has recently been explored as an oxygen electrode for solid oxide electrochemical cells (SOCs). Model thin film electrode studies show oxygen surface exchange rates that generally improve with increasing Fe content when x < 0.5, and are comparable to the best Co-containing perovskite electrode materials. Recent results on porous electrodes with the specific composition Sr(Ti 0.3 Fe 0.7 )O 3−δ show excellent electrode performance and stability, but other compositions have not been tested. Here we report results for porous electrodes with a range of compositions from x = 0.5 to 0.9. The polarization resistance decreases with increasing Fe content up to x = 0.7, but increases for further increases in x . This results from the interaction of two effects – the oxygen solid state diffusion coefficient increases with increasing x , but the electrode surface area and surface oxygen exchange rate decrease due to increased sinterability and Sr surface segregation for the Fe-rich compositions. Symmetric cells showed no degradation during 1000 h life tests at 700 °C even at a current density of 1.5 A cm −2 , showing that all the STF electrode compositions worked stably in both fuel cell modemore »and electrolysis modes. The excellent stability may be explained by X-ray Photoelectron Spectroscopy (XPS) results showing that the amount of surface segregated Sr did not change during the long-term testing, and by relatively low polarization resistances that help avoid electrode delamination.« less
  3. It is urgent to enhance battery energy storage capability to satisfy the increasing energy demand in modern society and reduce the average energy capacity cost. Among the candidates for next-generation high energy storage systems, the lithium-sulfur battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1) and cost savings potential.1 In addition to the high theoretical capacity of sulfur cathode as high as 1,673 mA h g-1, sulfur is further appealing due to its abundance in nature, low cost, and low toxicity. Despite these advantages, the application of sulfur cathodes to date has been hindered by a number of obstacles, including low active material loading, low electronic conductivity, shuttle effects, and sluggish sulfur conversion kinetics.2 The traditional 2D planer thick electrode is considered as a general approach to enhance the mass loading of the lithium-sulfur (Li-S) battery.3 However, the longer diffusion length of lithium ions required in the thick electrode decrease the wettability of the electrolyte (into the entire cathode) and utilization ratio of active materials.4 Encapsulating active sulfur in carbon hosts is another common method to improve the performance of sulfur cathodes by enhancing the electronic conductivity and restricting shuttle effects. Nevertheless, itmore »is also reported that the encapsulation approach causes unfavorable carbon agglomeration with low dimensional carbons and a low energy density of the battery with high dimensional carbons. Although an effort to induce defects in the cathode was made to promote sulfur conversion kinetic conditions, only one type of defect has demonstrated limited performance due to the strong adsorption of the uncatalyzed clusters to the defects (i.e.: catalyst poisoning). 5 To mitigate the issues listed above, herein we propose a novel sulfur electrode design strategy enabled by additive manufacturing and oxidative chemical vapor deposition (oCVD).6,7 Specifically, the electrode is designed to have a hierarchal hollow structure via a stereolithography technique to increase sulfur usage. Microchannels are constructed on the tailored sulfur cathode to further fortify the wettability of the electrolyte. The as-printed cathode is then sintered at 700 °C in a reducing atmosphere (e.g.: H2) in order to generate a carbon skeleton (i.e.: carbonization of resin) with intrinsic carbon defects. A cathode treatment with benzene sulfonic acid further induces additional defects (non-intrinsic) to enhance the sulfur conversion kinetic. Furthermore, intrinsic defects engineering is expected to synergistically create favorable sulfur conversion conditions and mitigate the catalyst poisoning issue. In this study, the oCVD technique is leveraged to produce a conformal coating layer to eliminate shuttle effects, unfavored in the Li-S battery performance. Identified by SEM and TEM characterizations, the oCVD PEDOT is not only covered on the surface of the cathode but also the inner surface of the microchannels. High resolution x-ray photoelectron spectroscopy analyses (C 1s and S 2p orbitals) between pristine and modified sample demonstrate that the high concentration of the defects have been produced on the sulfur matrix after sintering and posttreatment. In-operando XRD diffractograms show that the Li2S is generated in the oCVD PEDOT-coated sample during the charge and discharge process even with a high current density, confirming an eminent sulfur conversion kinetic condition. In addition, ICP-OES results of lithium metal anode at different states of charge (SoC) verify that the shuttle effects are excellently restricted by oCVD PEDOT. Overall, the high mass loading (> 5 mg cm-2) with elevated sulfur utilization ratio, accelerated reaction kinetics, and stabilized electrochemical process have been achieved on the sulfur cathode by implementing this innovative cathode design strategy. The results of this study demonstrate significant promises of employing pure sulfur powder with high electrochemical performance and suggest a pathway to the higher energy and power density battery.« less
  4. Enhancing battery energy storage capability and reducing the cost per average energy capacity is urgent to satisfy the increasing energy demand in modern society. The lithium-sulfur (Li-S) battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1), low cost, and low toxicity.1 Despite these advantages, the practical utilization of lithium-sulfur (Li-S) batteries to date has been hindered by a series of obstacles, including low active material loading, shuttle effects, and sluggish sulfur conversion kinetics.2 The traditional 2D planer thick electrode is considered as a general approach to enhance the mass loading of the Li-S battery.3 However, the longer diffusion length of lithium ions, which resulted in high tortuosity in the compact stacking thick electrode, decreases the penetration ability of the electrolyte into the entire cathode.4 Although an effort to induce catalysts in the cathode was made to promote sulfur conversion kinetic conditions, catalysts based on transition metals suffered from the low electronic conductivity, and some elements (i.e.: Co, Mn) may even absorb and restrict polysulfides for further reaction. 5 To mitigate the issues listed above, herein we propose a novel sulfur cathode design strategy enabled by additive manufacturing and oxidative chemical vapor deposition (oCVD).more »6,7 Specifically, the cathode is designed to have a hierarchal hollow structure via a stereolithography technique to increase sulfur usage. Microchannels are constructed on the tailored sulfur cathode to further fortify the wettability of the electrolyte. The as-printed cathode is then sintered at 700 °C in an N2 atmosphere in order to generate a carbon skeleton (i.e.: carbonization of resin) with intrinsic carbon defects. The intrinsic carbon defects are expected to create favorable sulfur conversion conditions with sufficient electronic conductivity. In this study, the oCVD technique is leveraged to produce a conformal coating layer to eliminate shuttle effects. Identified by scanning electron microscopy and energy-dispersive X-ray spectroscopy mapping characterizations, the oCVD PEDOT is not only covered on the surface of the cathode but also on the inner surface of the microchannels. High-resolution x-ray photoelectron spectroscopy analyses (C 1s and S 2p orbitals) between pristine and modified samples demonstrate that a high concentration of the defects has been produced on the sulfur matrix after sintering and posttreatment. In-operando XRD diffractograms show that the Li2S is generated in the oCVD PEDOT-coated sample during the charge and discharge process even with a high current density, confirming an eminent sulfur conversion kinetic condition. In addition, ICP-OES results of lithium metal anode at different states of charge (SoC) verify that the shuttle effects are excellently restricted by oCVD PEDOT. Overall, the high mass loading (> 5 mg cm-2) with an elevated sulfur utilization ratio, accelerated reaction kinetics and stabilized electrochemical process have been achieved on the sulfur cathode by implementing this innovative cathode design strategy. The results of this study demonstrate significant promises of employing pure sulfur powder with high electrochemical performance and suggest a pathway to the higher energy and power density battery. References: 1 Chen, Y. Adv Mater 33, e2003666. 2 Bhargav, A. Joule 4, 285-291. 3 Liu, S. Nano Energy 63, 103894. 4 Chu, T. Carbon Energy 3. 5 Li, Y. Matter 4, 1142-1188. 6 John P. Lock. Macromolecules 39, 4 (2006). 7 Zekoll, S. Energy & Environmental Science 11, 185-201.« less
  5. Nutrient nitrogen (N) and phosphorus (P) recovery from wastewater is an important challenge for enhanced environmental sustainability. Herein we report the synthesis and properties of mesoporous MgO nanoparticles doped with copper (Cu), iron (Fe), and zinc (Zn) as an alternative low-solubility high-abundance magnesium (Mg) source for crystalline struvite precipitation from nutrient-laden wastewater. Undoped MgO was shown to have the fastest phosphate (PO 4 3− ) adsorption kinetics with a k 2 value of 0.9 g g −1 min −1 at room temperature. The corresponding rate constant decreased for Cu–MgO (0.175 g g −1 min −1 ), Zn–MgO (0.145 g g −1 min −1 ), and Fe–MgO (0.02 g g −1 min −1 ). Undoped MgO resulted in the highest PO 4 3− removal at 94%, while Cu–MgO, Fe–MgO, and Zn–MgO resulted in 90%, 66% and 66%, respectively, under equivalent reaction conditions. All dopants resulted in the production of struvite as the main product with the incorporation of the transition metals into the struvite crystal lattice. X-ray absorption spectroscopy (XAS) showed that the majority of the Cu, Fe, and Zn were primarily in the +2, +3, and +2 oxidation states, respectively. XAS also showed that the Cu atoms exist in elongatedmore »octahedral coordination, while Fe was shown to be in octahedral coordination. Zn was shown to be in a complex disordered environment with octahedral sites coexisting with the majority of the tetrahedral sites. Finally, X-ray photoelectron spectroscopy data suggest a two-fold struvite surface enrichment with dopant metals, with Cu exhibiting an interesting new local binding structure. The dopant concentrations utilized were consistent with those found in natural Mg minerals, suggesting that (a) utilizing natural mineral periclase as the Mg source for struvite production can result in struvite formation, albeit at the expense of the reaction kinetics and overall yields, while also (b) supplying essential micronutrients, such as Zn and Cu, necessary for balanced nutrient uptake.« less