skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Open-source electrochemical cell for in situ X-ray absorption spectroscopy in transmission and fluorescence modes
X-ray spectroscopy is a valuable technique for the study of many materials systems. Characterizing reactionsin situandoperandocan reveal complex reaction kinetics, which is crucial to understanding active site composition and reaction mechanisms. In this project, the design, fabrication and testing of an open-source and easy-to-fabricate electrochemical cell forin situelectrochemistry compatible with X-ray absorption spectroscopy in both transmission and fluorescence modes are accomplished via windows with large opening angles on both the upstream and downstream sides of the cell. Using a hobbyist computer numerical control machine and free 3D CAD software, anyone can make a reliable electrochemical cell using this design. Onion-like carbon nanoparticles, with a 1:3 iron-to-cobalt ratio, were drop-coated onto carbon paper for testingin situX-ray absorption spectroscopy. Cyclic voltammetry of the carbon paper showed the expected behavior, with no increased ohmic drop, even in sandwiched cells. Chronoamperometry was used to apply 0.4 V versus reversible hydrogen electrode, with and without 15 min of oxygen purging to ensure that the electrochemical cell does not provide any artefacts due to gas purging. The XANES and EXAFS spectra showed no differences with and without oxygen, as expected at 0.4 V, without any artefacts due to gas purging. The development of this open-source electrochemical cell design allows for improved collection ofin situX-ray absorption spectroscopy data and enables researchers to perform both transmission and fluorescence simultaneously. It additionally addresses key practical considerations including gas purging, reduced ionic resistance and leak prevention.  more » « less
Award ID(s):
1827622
PAR ID:
10513807
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
International Union of Crystallography
Date Published:
Journal Name:
Journal of Synchrotron Radiation
Volume:
31
Issue:
2
ISSN:
1600-5775
Page Range / eLocation ID:
322 to 327
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Development of high‐performance, low‐cost catalysts for electrochemical water splitting is key to sustainable hydrogen production. Herein, ultrafast synthesis of carbon‐supported ruthenium–copper (RuCu/C) nanocomposites is reported by magnetic induction heating, where the rapid Joule's heating of RuCl3and CuCl2at 200 A for 10 s produces Ru–Cl residues‐decorated Ru nanocrystals dispersed on a CuClxscaffold, featuring effective Ru to Cu charge transfer. Among the series, the RuCu/C‐3 sample exhibits the best activity in 1 mKOH toward both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), with an overpotential of only −23 and +270 mV to reach 10 mA cm−2, respectively. When RuCu/C‐3 is used as bifunctional catalysts for electrochemical water splitting, a low cell voltage of 1.53 V is needed to produce 10 mA cm−2, markedly better than that with a mixture of commercial Pt/C+RuO2(1.59 V). In situ X‐ray absorption spectroscopy measurements show that the bifunctional activity is due to reduction of the Ru–Cl residues at low electrode potentials that enriches metallic Ru and oxidation at high electrode potentials that facilitates the formation of amorphous RuOx. These findings highlight the unique potential of MIH in the ultrafast synthesis of high‐performance catalysts for electrochemical water splitting. 
    more » « less
  2. null (Ed.)
    Iron single atom catalysts have emerged as one of the most active electrocatalysts towards the oxygen reduction reaction (ORR), but the unsatisfactory durability and limited activity for the oxygen evolution reaction (OER) has hampered their commercial applications in rechargeable metal–air batteries. By contrast, cobalt-based catalysts are known to afford excellent ORR stability and OER activity, due to the weak Fenton reaction and low OER Gibbs free energy. Herein, a bimetal hydrogel template is used to prepare carbon aerogels containing Fe–Co bimetal sites (NCAG/Fe–Co) as bifunctional electrocatalysts towards both ORR and OER, with enhanced activity and stability, as compared to the monometal counterparts. High-resolution transmission electron microscopy, elemental mapping and X-ray photoelectron spectroscopy measurements demonstrate homogeneous distributions of the metal centers within defected carbon lattices by coordination to nitrogen dopants. X-ray absorption spectroscopic measurements, in combination with other results, suggest the formation of FeN 3 and CoN 3 moieties on mutually orthogonal planes with a direct Fe–Co bonding interaction. Electrochemical measurements show that NCAG/Fe–Co delivers a small ORR/OER potential gap of only 0.64 V at the current density of 10 mA cm −2 , 60 mV lower than that (0.70 V) with commercial Pt/C and RuO 2 catalysts. When applied in a flexible Zn–air battery, the dual-metal NCAG/Fe–Co catalyst also shows a remarkable performance, with a high open-circuit voltage of 1.47 V, a maximum power density of 117 mW cm −2 , as well as good rechargeability and flexibility. Results from this study may offer an ingenious protocol in the design and engineering of highly efficient and durable bifunctional electrocatalysts based on dual metal-doped carbons. 
    more » « less
  3. The diffusion layer created by transition metal (TM) dissolution is ubiquitous at the electrochemical solid-liquid interface and plays a key role in determining electrochemical performance. Tracking the spatiotemporal dynamics of the diffusion layer has remained an unresolved challenge. With spatially resolved synchrotron X-ray fluorescence microscopy and micro-X-ray absorption spectroscopy, we demonstrate the in situ visualization and chemical identification of the dynamic diffusion layer near the electrode surface under electrochemical operating conditions. Our method allows for direct mapping of the reactive electrochemical interface and provides insights into engineering the diffusion layer for improving electrochemical performance. 
    more » « less
  4. Aqueous Zn/MnO 2 batteries with their environmental sustainability and competitive cost, are becoming a promising, safe alternative for grid-scale electrochemical energy storage. Presented as a promising design principle to deliver a higher theoretical capacity, this work offers fundamental understanding of the dissolution–deposition mechanism of Zn/β-MnO 2 . A multimodal synchrotron characterization approach including three operando X-ray techniques (powder diffraction, absorption spectroscopy, and fluorescence microscopy) is coupled with elementally resolved synchrotron X-ray nano-tomography. Together they provide a direct correlation between structural evolution, reaction chemistry, and 3D morphological changes. Operando synchrotron X-ray diffraction and spectroscopy show a crystalline-to-amorphous phase transition. Quantitative modeling of the operando data by Rietveld refinement for X-ray diffraction and multivariate curve resolution (MCR) for X-ray absorption spectroscopy are used in a complementary fashion to track the structural and chemical transitions of both the long-range (crystalline phases) and short-range (including amorphous phases) ordering upon cycling. Scanning X-ray microscopy and full-field nano-tomography visualizes the morphology of electrodes at different electrochemical states with elemental sensitivity to spatially resolve the formation of the Zn- and Mn-containing phases. Overall, this work critically indicates that for Zn/MnO 2 aqueous batteries, the reaction pathways involving Zn–Mn complex formation upon cycling become independent of the polymorphs of the initial electrode and sheds light on the interplay among structural, chemical, and morphological evolution for electrochemically driven phase transitions. 
    more » « less
  5. Selective electrochemical two-electron oxygen reduction is a promising route for renewable and on-site H2O2 generation as an alternative to the anthraquinone process. Herein, we report a high-performance nitrogen-coordinated single-atom Pd electrocatalyst, which is derived from Pd-doped zeolitic imidazolate frameworks (ZIFs) through one-step thermolysis. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) combined with X-ray absorption spectroscopy verifies atomically dispersed Pd atoms on nitrogen-doped carbon (Pd-NC). The single-atom Pd-NC catalyst exhibits excellent electrocatalytic performance for two-electron oxygen reduction to H2O2, which shows ∼95% selectivity toward H2O2 and an unprecedented onset potential of ∼0.8 V versus revisable hydrogen electrode (RHE) in 0.1 M KOH. Density functional theory (DFT) calculations demonstrate that the Pd-N4 catalytic sites thermodynamically prefer *–O bond breaking to O–O bond breaking, corresponding to a high selectivity for H2O2 production. This work provides a deep insight into the understanding of the catalytic process and design of high-performance 2e– ORR catalysts. 
    more » « less