Abstract Reconstructing images from the Event Horizon Telescope (EHT) observations of M87*, the supermassive black hole at the center of the galaxy M87, depends on a prior to impose desired image statistics. However, given the impossibility of directly observing black holes, there is no clear choice for a prior. We present a framework for flexibly designing a range of priors, each bringing different biases to the image reconstruction. These priors can be weak (e.g., impose only basic natural-image statistics) or strong (e.g., impose assumptions of black hole structure). Our framework uses Bayesian inference with score-based priors, which are data-driven priors arising from a deep generative model that can learn complicated image distributions. Using our Bayesian imaging approach with sophisticated data-driven priors, we can assess how visual features and uncertainty of reconstructed images change depending on the prior. In addition to simulated data, we image the real EHT M87* data and discuss how recovered features are influenced by the choice of prior.
more »
« less
Deep generative models for galaxy image simulations
ABSTRACT Image simulations are essential tools for preparing and validating the analysis of current and future wide-field optical surveys. However, the galaxy models used as the basis for these simulations are typically limited to simple parametric light profiles, or use a fairly limited amount of available space-based data. In this work, we propose a methodology based on deep generative models to create complex models of galaxy morphologies that may meet the image simulation needs of upcoming surveys. We address the technical challenges associated with learning this morphology model from noisy and point spread function (PSF)-convolved images by building a hybrid Deep Learning/physical Bayesian hierarchical model for observed images, explicitly accounting for the PSF and noise properties. The generative model is further made conditional on physical galaxy parameters, to allow for sampling new light profiles from specific galaxy populations. We demonstrate our ability to train and sample from such a model on galaxy postage stamps from the HST/ACS COSMOS survey, and validate the quality of the model using a range of second- and higher order morphology statistics. Using this set of statistics, we demonstrate significantly more realistic morphologies using these deep generative models compared to conventional parametric models. To help make these generative models practical tools for the community, we introduce galsim-hub, a community-driven repository of generative models, and a framework for incorporating generative models within the galsim image simulation software.
more »
« less
- Award ID(s):
- 2020295
- PAR ID:
- 10293510
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 504
- Issue:
- 4
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 5543 to 5555
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Machine learning models can greatly improve the search for strong gravitational lenses in imaging surveys by reducing the amount of human inspection required. In this work, we test the performance of supervised, semi-supervised, and unsupervised learning algorithms trained with the ResNetV2 neural network architecture on their ability to efficiently find strong gravitational lenses in the Deep Lens Survey (DLS). We use galaxy images from the survey, combined with simulated lensed sources, as labeled data in our training data sets. We find that models using semi-supervised learning along with data augmentations (transformations applied to an image during training, e.g. rotation) and Generative Adversarial Network (GAN) generated images yield the best performance. They offer 5 – 10 times better precision across all recall values compared to supervised algorithms. Applying the best performing models to the full 20 deg2 DLS survey, we find 3 Grade-A lens candidates within the top 17 image predictions from the model. This increases to 9 Grade-A and 13 Grade-B candidates when 1 per cent (∼2500 images) of the model predictions are visually inspected. This is ≳ 10 × the sky density of lens candidates compared to current shallower wide-area surveys (such as the Dark Energy Survey), indicating a trove of lenses awaiting discovery in upcoming deeper all-sky surveys. These results suggest that pipelines tasked with finding strong lens systems can be highly efficient, minimizing human effort. We additionally report spectroscopic confirmation of the lensing nature of two Grade-A candidates identified by our model, further validating our methods.more » « less
-
Abstract By fitting observed data with predicted seismograms, least‐squares migration (LSM) computes a generalized inverse for a subsurface reflectivity model, which can improve image resolution and reduce artifacts caused by incomplete acquisition. However, the large computational cost of LSM required for simulations and migrations limits its wide applications for large‐scale imaging problems. Using point‐spread function (PSF) deconvolution, we present an efficient and stable high‐resolution imaging method. The PSFs are first computed on a coarse grid using local ray‐based Gaussian beam Born modeling and migration. Then, we interpolate the PSFs onto a fine‐image grid and apply a high‐dimensional Gaussian function to attenuate artifacts far away from the PSF centers. With 2D/3D partition of unity, we decompose the traditional adjoint migration results into local images with the same window size as the PSFs. Then, these local images are deconvolved by the PSFs in the wavenumber domain to reduce the effects of the band‐limited source function and compensate for irregular subsurface illumination. The final assembled image is obtained by applying the inverse of the partitions for the deconvolved local images. Numerical examples for both synthetic and field data demonstrate that the proposed PSF deconvolution can significantly improve image resolution and amplitudes for deep structures, while not being sensitive to velocity errors as the data‐domain LSM.more » « less
-
ABSTRACT In order to prepare for the upcoming wide-field cosmological surveys, large simulations of the Universe with realistic galaxy populations are required. In particular, the tendency of galaxies to naturally align towards overdensities, an effect called intrinsic alignments (IA), can be a major source of systematics in the weak lensing analysis. As the details of galaxy formation and evolution relevant to IA cannot be simulated in practice on such volumes, we propose as an alternative a Deep Generative Model. This model is trained on the IllustrisTNG-100 simulation and is capable of sampling the orientations of a population of galaxies so as to recover the correct alignments. In our approach, we model the cosmic web as a set of graphs, where the graphs are constructed for each halo, and galaxy orientations as a signal on those graphs. The generative model is implemented on a Generative Adversarial Network architecture and uses specifically designed Graph-Convolutional Networks sensitive to the relative 3D positions of the vertices. Given (sub)halo masses and tidal fields, the model is able to learn and predict scalar features such as galaxy and dark matter subhalo shapes; and more importantly, vector features such as the 3D orientation of the major axis of the ellipsoid and the complex 2D ellipticities. For correlations of 3D orientations the model is in good quantitative agreement with the measured values from the simulation, except for at very small and transition scales. For correlations of 2D ellipticities, the model is in good quantitative agreement with the measured values from the simulation on all scales. Additionally, the model is able to capture the dependence of IA on mass, morphological type, and central/satellite type.more » « less
-
Generative models learned from training using deep learning methods can be used as priors in under-determined inverse problems, including imaging from sparse set of measurements. In this paper, we present a novel hierarchical deep-generative model MrSARP for SAR imagery that can synthesize SAR images of a target at different resolutions jointly. MrSARP is trained in conjunction with a critic that scores multi resolution images jointly to decide if they are realistic images of a target at different resolutions. We show how this deep generative model can be used to retrieve the high spatial resolution image from low resolution images of the same target. The cost function of the generator is modified to improve its capability to retrieve the input parameters for a given set of resolution images. We evaluate the model's performance using three standard error metrics used for evaluating super-resolution performance on simulated data and compare it to upsampling and sparsity based image super-resolution approaches.more » « less
An official website of the United States government

