Traditionally, a high-performance microscope with a large numerical aperture is required to acquire high-resolution images. However, the images’ size is typically tremendous. Therefore, they are not conveniently managed and transferred across a computer network or stored in a limited computer storage system. As a result, image compression is commonly used to reduce image size resulting in poor image resolution. Here, we demonstrate custom convolution neural networks (CNNs) for both super-resolution image enhancement from low-resolution images and characterization of both cells and nuclei from hematoxylin and eosin (H&E) stained breast cancer histopathological images by using a combination of generator and discriminator networks so-called super-resolution generative adversarial network-based on aggregated residual transformation (SRGAN-ResNeXt) to facilitate cancer diagnosis in low resource settings. The results provide high enhancement in image quality where the peak signal-to-noise ratio and structural similarity of our network results are over 30 dB and 0.93, respectively. The derived performance is superior to the results obtained from both the bicubic interpolation and the well-known SRGAN deep-learning methods. In addition, another custom CNN is used to perform image segmentation from the generated high-resolution breast cancer images derived with our model with an average Intersection over Union of 0.869 and an average dice similarity coefficient of 0.893 for the H&E image segmentation results. Finally, we propose the jointly trained SRGAN-ResNeXt and Inception U-net Models, which applied the weights from the individually trained SRGAN-ResNeXt and inception U-net models as the pre-trained weights for transfer learning. The jointly trained model’s results are progressively improved and promising. We anticipate these custom CNNs can help resolve the inaccessibility of advanced microscopes or whole slide imaging (WSI) systems to acquire high-resolution images from low-performance microscopes located in remote-constraint settings.
more »
« less
MrSARP: A Hierarchical Deep Generative Prior for SAR Image Super-resolution
Generative models learned from training using deep learning methods can be used as priors in under-determined inverse problems, including imaging from sparse set of measurements. In this paper, we present a novel hierarchical deep-generative model MrSARP for SAR imagery that can synthesize SAR images of a target at different resolutions jointly. MrSARP is trained in conjunction with a critic that scores multi resolution images jointly to decide if they are realistic images of a target at different resolutions. We show how this deep generative model can be used to retrieve the high spatial resolution image from low resolution images of the same target. The cost function of the generator is modified to improve its capability to retrieve the input parameters for a given set of resolution images. We evaluate the model's performance using three standard error metrics used for evaluating super-resolution performance on simulated data and compare it to upsampling and sparsity based image super-resolution approaches.
more »
« less
- Award ID(s):
- 2037398
- PAR ID:
- 10491301
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- Proceedings of 2023 IEEE Radar Conference (RadarConf23)
- ISBN:
- 978-1-6654-3669-4
- Page Range / eLocation ID:
- 1 to 6
- Subject(s) / Keyword(s):
- Deep Learning Super-Resolution Compressive sensing
- Format(s):
- Medium: X
- Location:
- San Antonio, TX, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Unpaired data training enables super-resolution confocal microscopy from low-resolution acquisitionsSupervised deep-learning models have enabled super-resolution imaging in several microscopic imaging modalities, increasing the spatial lateral bandwidth of the original input images beyond the diffraction limit. Despite their success, their practical application poses several challenges in terms of the amount of training data and its quality, requiring the experimental acquisition of large, paired databases to generate an accurate generalized model whose performance remains invariant to unseen data. Cycle-consistent generative adversarial networks (cycleGANs) are unsupervised models for image-to-image translation tasks that are trained on unpaired datasets. This paper introduces a cycleGAN framework specifically designed to increase the lateral resolution limit in confocal microscopy by training a cycleGAN model using low- and high-resolution unpaired confocal images of human glioblastoma cells. Training and testing performances of the cycleGAN model have been assessed by measuring specific metrics such as background standard deviation, peak-to-noise ratio, and a customized frequency content measure. Our cycleGAN model has been evaluated in terms of image fidelity and resolution improvement using a paired dataset, showing superior performance than other reported methods. This work highlights the efficacy and promise of cycleGAN models in tackling super-resolution microscopic imaging without paired training, paving the path for turning home-built low-resolution microscopic systems into low-cost super-resolution instruments by means of unsupervised deep learning.more » « less
-
Abstract In recent years, the new physics of the Sun has been revealed using advanced data with high spatial and temporal resolutions. The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory has accumulated abundant observation data for the study of solar activity with sufficient cadence, but their spatial resolution (about 1″) is not enough to analyze the subarcsecond structure of the Sun. On the other hand, high-resolution observation from large-aperture ground-based telescopes, such as the 1.6 m Goode Solar Telescope (GST) at the Big Bear Solar Observatory, can achieve a much higher resolution on the order of 0.″1 (about 70 km). However, these high-resolution data only became available in the past 10 yr, with a limited time period during the day and with a very limited field of view. The Generative Adversarial Network (GAN) has greatly improved the perceptual quality of images in image translation tasks, and the self-attention mechanism can retrieve rich information from images. This paper uses HMI and GST images to construct a precisely aligned data set based on the scale-invariant feature transform algorithm and t0 reconstruct the HMI continuum images with four times better resolution. Neural networks based on the conditional GAN and self-attention mechanism are trained to restore the details of solar active regions and to predict the reconstruction error. The experimental results show that the reconstructed images are in good agreement with GST images, demonstrating the success of resolution improvement using machine learning.more » « less
-
Diffusion models excel at generating photo-realistic images but come with significant computational costs in both training and sampling. While various techniques address these computational challenges, a less-explored issue is designing an efficient and adaptable network backbone for iterative refinement. Current options like U-Net and Vision Transformer often rely on resource-intensive deep networks and lack the flexibility needed for generating images at variable resolutions or with a smaller network than used in training. This study introduces LEGO bricks, which seamlessly integrate Local-feature Enrichment and Global-content Orchestration. These bricks can be stacked to create a test-time reconfigurable diffusion backbone, allowing selective skipping of bricks to reduce sampling costs and generate higher-resolution images than the training data. LEGO bricks enrich local regions with an MLP and transform them using a Transformer block while maintaining a consistent full-resolution image across all bricks. Experimental results demonstrate that LEGO bricks enhance training efficiency, expedite convergence, and facilitate variable-resolution image generation while maintaining strong generative performance. Moreover, LEGO significantly reduces sampling time compared to other methods, establishing it as a valuable enhancement for diffusion models.more » « less
-
Urban and environmental researchers seek to obtain building features (e.g., building shapes, counts, and areas) at large scales. However, blurriness, occlusions, and noise from prevailing satellite images severely hinder the performance of image segmentation, super-resolution, or deep-learning-based translation networks. In this article, we combine globally available satellite images and spatial geometric feature datasets to create a generative modeling framework that enables obtaining significantly improved accuracy in per-building feature estimation and the generation of visually plausible building footprints. Our approach is a novel design that compensates for the degradation present in satellite images by using a novel deep network setup that includes segmentation, generative modeling, and adversarial learning for instance-level building features. Our method has proven its robustness through large-scale prototypical experiments covering heterogeneous scenarios from dense urban to sparse rural. Results show better quality over advanced segmentation networks for urban and environmental planning, and show promise for future continental-scale urban applications.more » « less
An official website of the United States government

