skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Small-scale Implementation of Industry 4.0
This paper discusses the implementation of Industry 4.0 in an educational setting. Simulation, virtual reality, analytics, robotics and automation, and 3D printing are integrated to develop a small-scale production line for producing and inspecting 3D printed parts. The system consists of a robot and controller, programmable logic controller, 3D printer, machine vision system, conveyor belt, 3-phase motor and motor controller, webcam, PC and monitor, Raspberry Pi computer, pneumatic system, beam sensor, simulation software, and VR equipment. The system components are connected via ethernet cables running to a basic ethernet switch. An ethernet router is also connected to the switch to resolve IP connection attempts by the connected components. A mini CNC machine is used to drill holes on small metal parts that are assembled with 3D printed parts and plastic bricks to make a car toy. A robot is pre-programmed to perform the assembly of the car toy and a Cognex® camera is used to inspect the parts. Deep learning models are used to predict the remaining useful life of the drilling bits.  more » « less
Award ID(s):
1711603
PAR ID:
10293626
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 2020 IISE Annual Conference
Page Range / eLocation ID:
1-6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An innovative system restoration strategy using doubly‐fed induction generator‐based wind farms is proposed. The strategy involves retention of charge in the DC bus following a blackout and ‘Hot‐Swapping’ between direct flux control mode and conventional grid‐connected mode, which does not require resetting of any controller dynamic states and avoids the need for energy storage. An autonomous synchronisation mechanism enabled by remote synchrophasors is also proposed. A blacked‐out system, which includes a wind farm and a voltage source converter (VSC)‐HVDC connected to a network unaffected by blackout, is used as the study system. Transmission line charging and load pickup is performed using the wind farm in flux control mode while the VSC‐HVDC system conducts the same process for another portion of the system. The proposed ‘Hot‐Swapping’ and autonomous synchronisation approach is applied to connect the two parts of the grid and switch the wind farm to grid connected mode of operation. The results are demonstrated in a hybrid co‐simulation platform where the aforementioned system is modelled in EMT‐type software and the rest of the network is represented in a phasor framework. 
    more » « less
  2. Abstract Additive manufacturing (AM), also known as 3D printing, has significantly advanced in recent years, especially with the introduction of multifunctional 3D-printed parts. AM fabricated monolith has multiple material capabilities, thus various functionalities are well-perceived by the manufacturing communities. As an example, a traditional fused filament fabrication (FFF) 3D printer fabricates multi-material thermoplastic parts using a dual extrusion system to increase the functionality of the part including variable stiffening and gradient structures. In addition to the multiple thermoplastic feedstocks in a dual extrusion system, multifunctional AM can be achieved by embedding electronics or reinforcing fibers within the fabricated thermoplastic parts, which significantly impacts the rapid prototyping of hybrid components in manufacturing industries. State-of-the-art techniques such as coextrusion systems, ultrasonic welding tools, and thermal embedding tools have been implemented to automate the process of embedding conductive material within the 3D-printed thermoplastic substrate. The goal of this tool development effort is to embed wires within 3D 3D-printed plastic substrate. This research consisted of developing a wire embedding tool that can be integrated into an FFF desktop 3D printer to deposit conductive as well as resistive wires within the 3D-printed thermoplastic substrate. By realizing the challenges for discrete materials interaction at the interface such as nichrome wires and Acrylonitrile Butadiene Styrene (ABS) plastics and polylactic acid (PLA), the goal of this tool was to immerse wire within ABS and PLA substrate using transient swelling mechanisms under non-polar solvent. A proof-of-concept test stands with a wire feed system and the embedding wheel was first designed and manufactured using 3D printing to examine if a traditional roller-guided system, primarily used for plastic extrusion, would be sufficient for wire extrusion. The development of the integrated wire embedding tool was initiated based on the success of the proof-of-concept wire extrusion system. The design of the integrated wire embedding tool consisted of three sub-assemblies: wire delivery assembly, wire shearing assembly, and swivel assembly. The wire delivery assembly is responsible for feeding the wire towards the thermoplastic using the filament delivery system seen within FFF printers. For the wire shearing mechanism, a cutting Tungsten carbide blade in conjunction with a Nema-17 external stepper motor was used to shear the wire. For the wire embedding assembly, a custom swivel mount was fabricated with a bearing housing for a ball bearing that allowed for a 360-degree motion around the horizontal plane. A wire guide nozzle was placed through the mount to allow for the wire to be fed down into a brass embedding wheel in a tangential manner. Additionally, the solvent reservoir was mounted such that an even layer of solution was dispensed onto the thermoplastic substrate. Through this tool development effort, the aim was to develop technologies that will enable 3D printing of wire-embedded monolith for various applications including a self-heating mold of thermoset-based composite manufacturing as well as smart composites with embedded sensors. 
    more » « less
  3. In this paper, we analyze systems with low throughput human-machine interfaces (such as a brain-computer interface, single switch interface) from the controls perspective. We develop some principles for performance improvement in such systems based on the parallelization of inference and robot motion. The proposed principles are used to design a novel shared position control to navigate a circular massless holonomic robot in a known environment. The system is implemented in simulation and integrated with a real robotic wheelchair. Robot experiments demonstrated the viability of the proposed navigation method in various modes of operation. 
    more » « less
  4. Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
    An often unglamorous, yet critical, part of most millimeter/submillimeter astronomical instruments is cryogenic temperature monitoring and control. Depending on the operating wavelength of the instrument and detector technology, this could be stable temperatures in the Kelvin range for millimeter heterodyne systems to 100 mK temperatures at sub-micro-Kelvin stability as for many submillimeter bolometer systems. Here we describe a project of the HARDWARE.astronomy initiative to build a low-cost open-source temperature monitoring and control system. The HARDWARE.astronomy Housekeeping Box, or H.aHk Box (pronounced “hack box”) is developed primarily by undergraduates and employs existing open-source devices (e.g Arduino, Raspberry Pi) to reduce costs while also limiting the complexity of the development. The H.aHk Box features a chassis with a control computer and ten expansion slots that can be filled with a variety of expansion cards. These cards include initially an AC 4-wire temperature monitor and PID control cards. Future work will develop 2-wire temperature monitors, stepper motor controller, and high-power supply. The base-system will also be able to interface with other house-keeping systems over USB, serial port and ethernet. The first deployment of the H.aHk Box will be for the ZEUS-2 submillimeter grating spectrometer. All designs, firmware, software and parts list will be published online allowing for other projects to adopt the system and create custom expansion cards as needed. Here we describe the design (including mechanical, electrical, firmware, and software components) and initial performance of the H.aHk Box system with initial AC/DC 4-wire and PID cards. 
    more » « less
  5. Robot-mediated interventions are one promising and novel approach for encouraging motor exploration in young children, but knowledge about the effectiveness of toy-like features for child-robot interaction is limited. We were interested in understanding the characteristics of current toys to inform the design of interactive abilities for assistive robots. This work first provides a systematic review of toy characteristics in n=154 Fisher-Price products and then analyzes the effectiveness of common and uncommon toy-like behaviors from our custom assistive robot. Toy review results showed that light and sound features were significantly more common than bubbles, wheels, and self-propulsion. Exploratory play sessions with our assistive robot showed that bubbles were significantly more successful at encouraging child motion than other robot behaviors. Further, all studied robot behaviors demonstrated the capability to encourage child motion. The products of this work can inform the efforts of human-robot interaction and child development experts who study child mobility interventions. 
    more » « less