skip to main content


Title: Online and Interactive Simulations to Teach Manufacturing and Supply Chain
The outbreak of 2019 Coronavirus Disease (COVID-19) has forced schools and universities around the world to adopt online learning. However, many educators are facing challenges because they do not have prior experience with online teaching and the transition happened rapidly. One effective way to keep students engaged and improve their learning is by using online simulation games. Simulation games provide opportunities for feedback and learning and can promote interdisciplinary and collaborative working styles. This research develops internet-based multi-player interactive simulation games to teach manufacturing and supply chain concepts. The players in the supply-chain games include a customer, a manufacturer, an assembler, and a supplier. The simulation games are structured into three different parts: the backend server that handles the game logic, the client server that takes user input, and the database which stores the input information. The simulation involves producing car toys that satisfy customer requirements. A group of high school and community college educators tested the simulation games and provided feedback for improvement. The simulations were then deployed in the practice of high school and undergraduate classrooms. Feedback from teachers and students indicates that online simulations can improve effectiveness of teaching and learning.  more » « less
Award ID(s):
1711603
NSF-PAR ID:
10293630
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2020 IISE Annual Conference
Page Range / eLocation ID:
1-6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    To meet the rising demand for computer science (CS) courses, K-12 educators need to be prepared to teach introductory concepts and skills in courses such as Computer Science Principles (CSP), which takes a breadth-first approach to CS and includes topics beyond programming such as data, impacts of computing, and networks. Educators are now also being asked to teach more advanced concepts in courses such as the College Board's Advanced Placement Computer Science A (CSA) course, which focuses on advanced programming using Java and includes topics such as objects, inheritance, arrays, and recursion. Traditional CSA curricula have not used content or pedagogy designed to engage a broad range of learners and support their success. Unlike CSP, which is attracting more underrepresented students to computing as it was designed, CSA continues to enroll mostly male, white, and Asian students [College Board 2019, Ericson 2020, Sax 2020]. In order to expand CS education opportunities, it is crucial that students have an engaging experience in CSA similar to CSP. Well-designed differentiated professional development (PD) that focuses on content and pedagogy is necessary to meet individual teacher needs, to successfully build teacher skills and confidence to teach CSA, and to improve engagement with students [Darling-Hammond 2017]. It is critical that as more CS opportunities and courses are developed, teachers remain engaged with their own learning in order to build their content knowledge and refine their teaching practice [CSTA 2020]. CSAwesome, developed and piloted in 2019, offers a College Board endorsed AP CSA curriculum and PD focused on supporting the transition of teachers and students from CSP to CSA. This poster presents preliminary findings aimed at exploring the supports and challenges new-to-CSA high school level educators face when transitioning from teaching an introductory, breadth-first course such as CSP to teaching the more challenging, programming-focused CSA course. Five teachers who completed the online CSAwesome summer 2020 PD completed interviews in spring 2021. The project employed an inductive coding scheme to analyze interview transcriptions and qualitative notes from teachers about their experiences learning, teaching, and implementing CSP and CSA curricula. Initial findings suggest that teachers’ experience in the CSAwesome PD may improve their confidence in teaching CSA, ability to effectively use inclusive teaching practices, ability to empathize with their students, problem-solving skills, and motivation to persist when faced with challenges and difficulties. Teachers noted how the CSAwesome PD provided them with a student perspective and increased feelings of empathy. Participants spoke about the implications of the COVID-19 pandemic on their own learning, student learning, and teaching style. Teachers enter the PD with many different backgrounds, CS experience levels, and strengths, however, new-to-CSA teachers require further PD on content and pedagogy to transition between CSP and CSA. Initial results suggest that the CSAwesome PD may have an impact on long-term teacher development as new-to-CSA teachers who participated indicated a positive impact on their teaching practices, ideologies, and pedagogies. 
    more » « less
  2. The COVID-19 global pandemic presented unprecedented challenges to K-16 educators, including the closing of educational agencies and the abrupt transition to online teaching and learning. Educators sought to adapt in-person learning activities to teach in remote and hybrid online settings. This study explores how a partnership between middle and high school teachers in an urban school district and undergraduate STEM mentors of color leveraged digital tools and collaborative pedagogies to teach science, technology, and engineering during a global pandemic. We used a qualitative multi-case study to describe three cases of teachers and undergraduate mentors. We then offer a cross-case analysis to interpret the diverse ways in which partners used technologies, pedagogy, and content to promote equitable outcomes for students, both in remote and hybrid settings. We found that the partnership and technologies led to rigorous and connected learning for students. Teachers and undergraduates carefully scaffolded technology use and content applications while providing ongoing opportunities for students to receive feedback and reflect on their learning. Findings provide implications for community partnerships and digital tools to promote collaborative and culturally relevant STEM learning opportunities in the post-pandemic era. 
    more » « less
  3. Background

    Teaching climate change is difficult. Its complexity spans many subjects, often taught disjointedly. Many climate change effects are not immediately observable, making it hard for students to connect to it personally.

    Aim

    This study investigates how we can spark high school students’ interest in learning about climate change using educational computer games.

    Method

    We adopted a qualitative case research design to understand how games boost students’ drive and their role in motivating them. We selected a high school teacher and her eight students as our subjects, interviewing them in person. We analyzed their responses were using Keller’s ARCS Theory of Motivation Model and blending deductive and inductive methods.

    Results

    The findings were encouraging: games positively impacted students’ interest in climate change. They transformed the learning atmosphere into a concentrated, captivating space where the content was seen as tough yet enjoyable. Moreover, the games helped students make real-world connections, enhancing their understanding and appreciation of the topic.

    Conclusion

    Educational games are a powerful tool in motivating students to learn about climate change science. Hence, educators should be ready to harness the games’ power to create immersive, fun, and stimulating learning environments.

     
    more » « less
  4. This research explores a novel human-in-the-loop approach that goes beyond traditional prompt engineering approaches to harness Large Language Models (LLMs) with chain-of-thought prompting for grading middle school students’ short answer formative assessments in science and generating useful feedback. While recent efforts have successfully applied LLMs and generative AI to automatically grade assignments in secondary classrooms, the focus has primarily been on providing scores for mathematical and programming problems with little work targeting the generation of actionable insight from the student responses. This paper addresses these limitations by exploring a human-in-the-loop approach to make the process more intuitive and more effective. By incorporating the expertise of educators, this approach seeks to bridge the gap between automated assessment and meaningful educational support in the context of science education for middle school students. We have conducted a preliminary user study, which suggests that (1) co-created models improve the performance of formative feedback generation, and (2) educator insight can be integrated at multiple steps in the process to inform what goes into the model and what comes out. Our findings suggest that in-context learning and human-in-the-loop approaches may provide a scalable approach to automated grading, where the performance of the automated LLM-based grader continually improves over time, while also providing actionable feedback that can support students’ open-ended science learning. 
    more » « less
  5. A lasting impact of the COVID-19 global pandemic likely is the permanent inclusion of online learning in K–12. The rapid move to online learning left many teachers, parents, and students pining for in-person learning and highlighted major gaps in the online resources necessary for fully remote K–12 learning. But it also underscored considerable strengths of online formats for flexible learning and instruction—particularly as district capacities expanded and familiarity with online instruction increased. Many administrators now envision a permanent end to unplanned school closures (goodbye, snow days!) and long-term support for (at least intermittent) online learning. But what does continued online instruction mean for science learning, where hands-on learning is central to students’ developing skills and knowledge? Science educators implementing online instruction have faced myriad challenges, including providing effective feedback and guidance while students engaged in more independent work. We greatly respect and admire the passion and dedication that science teachers have invested in finding creative ways to implement science inquiry during online pandemic instruction. As we move beyond “emergency” remote instruction and build on shared experiences with online science teaching, it is an ideal time to rethink science inquiry online and to collectively pursue new approaches to authentic science instruction with online resources. 
    more » « less