During the abrupt and unplanned transition to remote online learning formats due to the COVID-19 outbreak, educators have had to adopt new teaching methods. For instance, online simulations tailored to specific curriculum topics emerged, allowing students to apply their knowledge creatively, with potentially positive effects on engagement and learning efficacy. Here, we examine the implementation of the “Save the World” simulation, created by Wonderville.org, in a high school Advanced Placement Environmental Science classroom in a remote online learning setting. In this module, students determine the most viable renewable energy generation option for given environments. Based on student and teacher feedback, the simulation effectively delivers educational material and promotes student engagement, demonstrating that online simulations can serve as a viable tool to enhance environmental science education and remote learning.
- Award ID(s):
- 1711603
- NSF-PAR ID:
- 10293630
- Date Published:
- Journal Name:
- Proceedings of the 2020 IISE Annual Conference
- Page Range / eLocation ID:
- 1-6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Preservice teachers (PSTs) need to be able to use ambitious teaching practices to help support their students’ productive engagement in scientific practices such as analyzing and interpreting data or using evidence-based reasoning to support their claims. Approximations of practice are one way in which teacher educators can support their PSTs to develop their skills in enacting ambitious teaching practices. In this study, we report on the use of a suite of three online, simulated approximations of practice where secondary PSTs practiced facilitating discussions focused on engaging students in argumentation. Using information from both PSTs’ and teacher educators’ perspectives, we examined their main takeaways from each simulation experience, how learning from one simulation was used to prepare for the next simulation, PSTs’ perception of the simulations’ authenticity, and their views about whether they would recommend using this online suite of simulations in future teacher preparation courses. Findings suggested that teacher educators and PSTs alike noted a variety of main takeaways, including understanding the importance of planning and asking good questions. Furthermore, they recommended the suite for use in future teacher education courses. Implications of the work for productively integrating online simulations into teacher education settings are discussed.more » « less
-
The COVID-19 global pandemic presented unprecedented challenges to K-16 educators, including the closing of educational agencies and the abrupt transition to online teaching and learning. Educators sought to adapt in-person learning activities to teach in remote and hybrid online settings. This study explores how a partnership between middle and high school teachers in an urban school district and undergraduate STEM mentors of color leveraged digital tools and collaborative pedagogies to teach science, technology, and engineering during a global pandemic. We used a qualitative multi-case study to describe three cases of teachers and undergraduate mentors. We then offer a cross-case analysis to interpret the diverse ways in which partners used technologies, pedagogy, and content to promote equitable outcomes for students, both in remote and hybrid settings. We found that the partnership and technologies led to rigorous and connected learning for students. Teachers and undergraduates carefully scaffolded technology use and content applications while providing ongoing opportunities for students to receive feedback and reflect on their learning. Findings provide implications for community partnerships and digital tools to promote collaborative and culturally relevant STEM learning opportunities in the post-pandemic era.more » « less
-
Background Teaching climate change is difficult. Its complexity spans many subjects, often taught disjointedly. Many climate change effects are not immediately observable, making it hard for students to connect to it personally.
Aim This study investigates how we can spark high school students’ interest in learning about climate change using educational computer games.
Method We adopted a qualitative case research design to understand how games boost students’ drive and their role in motivating them. We selected a high school teacher and her eight students as our subjects, interviewing them in person. We analyzed their responses were using Keller’s ARCS Theory of Motivation Model and blending deductive and inductive methods.
Results The findings were encouraging: games positively impacted students’ interest in climate change. They transformed the learning atmosphere into a concentrated, captivating space where the content was seen as tough yet enjoyable. Moreover, the games helped students make real-world connections, enhancing their understanding and appreciation of the topic.
Conclusion Educational games are a powerful tool in motivating students to learn about climate change science. Hence, educators should be ready to harness the games’ power to create immersive, fun, and stimulating learning environments.
-
Cohen, J ; Solano, G (Ed.)To address the diversity of student differences, educators need to actively recognize and counter patterns of bias in their teaching practices as well as in their classroom environments. The topic is highly relevant to the education field including faculty of educator preparation programs, classroom teachers and administrators. The simulated teaching environment includes research-based outcomes that show improvement in teaching efficacy and culturally diverse teaching practices. The simulation is focused on allowing educators to “practice teaching” in a variety of content areas any time benefitting from the simEquity experience by learning how to change instructional practices based on bias awareness and guided improvement through targeted feedback. Context appropriate recommendations for improvements in equity-based teaching practices will provide participants with the tools needed for reducing implicit bias in instruction. The cycle includes planning instruction, teaching in a simulation, receiving feedback, improving instruction for subsequent simulations and reflecting on the practices that were used with the artificially created students. One strength of using simulations is the objective feedback provided to participants that allow improvements based on actual choices made with each of the simStudents. All participants will have access for any of their colleagues and students to the “Teaching without bias” module for one year.more » « less