- Award ID(s):
- 1700728
- Publication Date:
- NSF-PAR ID:
- 10293661
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 20
- Issue:
- 6
- Page Range or eLocation-ID:
- 3483 to 3501
- ISSN:
- 1680-7324
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract. Over the eastern North Atlantic (ENA) ocean, a total of 20 non-precipitating single-layer marine boundary layer (MBL) stratus and stratocumuluscloud cases are selected to investigate the impacts of the environmental variables on the aerosol–cloud interaction (ACIr) using theground-based measurements from the Department of Energy Atmospheric Radiation Measurement (ARM) facility at the ENA site during 2016–2018. TheACIr represents the relative change in cloud droplet effective radius re with respect to the relative change in cloudcondensation nuclei (CCN) number concentration at 0.2 % supersaturation (NCCN,0.2 %) in the stratified water vaporenvironment. The ACIr values vary from −0.01 to 0.22 with increasing sub-cloud boundary layer precipitable water vapor (PWVBL)conditions, indicating that re is more sensitive to the CCN loading under sufficient water vapor supply, owing to the combined effectof enhanced condensational growth and coalescence processes associated with higher Nc and PWVBL. The principal componentanalysis shows that the most pronounced pattern during the selected cases is the co-variations in the MBL conditions characterized by the verticalcomponent of turbulence kinetic energy (TKEw), the decoupling index (Di), and PWVBL. The environmental effects onACIr emerge after the data are stratified into different TKEw regimes. The ACIr values, under both lowerand higher PWVBL conditions, more than double from the low-TKEw to high-TKEwmore »
-
Over the eastern north Atlantic (ENA) ocean, a total of 21 non-drizzling single-layer marine boundary layer (MBL) stratus and stratocumulus cloud caseperiods are selected in order to investigate the impacts of the environmental variables on the aerosol-cloud interaction (ACI_r) using the ground-based measurements from the Department of Energy Atmospheric Radiation Measurement (ARM) facility at the ENA site during the period 2016 – 2018. The ACI_r represents the relative change of cloud-droplet effective radius r_e with respect to the relative change of cloud condensation nuclei (CCN) number concentration (N_CCN) in the water vapor stratified environment. The ACI_r values vary from -0.004 to 0.207 with increasing precipitable water vapor (PWV) conditions, indicating that r_e is more sensitive to the CCN loading under sufficient water vapor supply, owing to the combined effect of enhanced condensational growth and coalescence processes associated with higher N_c and PWV. The environmental effects on ACI_r are examined by stratifying the data into different lower tropospheric stability (LTS) and vertical component of turbulence kinetic energy (TKE_w) regimes. The higher LTS normally associates with a more adiabatic cloud layer and a lower boundary layer and thus results in higher CCN to cloud droplet conversion and ACI_r. The ACI_r values undermore »
-
Abstract A framework is introduced to investigate the indirect effect of aerosol loading on tropical deep convection using three-dimensional limited-domain idealized cloud-system-resolving model simulations coupled with large-scale dynamics over fixed sea surface temperature. The large-scale circulation is parameterized using the spectral weak temperature gradient (WTG) approximation that utilizes the dominant balance between adiabatic cooling and diabatic heating in the tropics. The aerosol loading effect is examined by varying the number of cloud condensation nuclei (CCN) available to form cloud droplets in the two-moment bulk microphysics scheme over a wide range of environments from 30 to 5000 cm−3. The radiative heating is held at a constant prescribed rate in order to isolate the microphysical effects. Analyses are performed over the period after equilibrium is achieved between convection and the large-scale environment. Mean precipitation is found to decrease modestly and monotonically when the aerosol number concentration increases as convection gets weaker, despite the increase in cloud liquid water in the warm-rain region and ice crystals aloft. This reduction is traced down to the reduction in surface enthalpy fluxes as an energy source to the atmospheric column induced by the coupling of the large-scale motion, though the gross moist stability remains constant. Increasingmore »
-
Abstract. Twelve months of measurements collected during the Two-ColumnAerosol Project field campaign at Cape Cod, Massachusetts, which started inthe summer of 2012, were used to investigate aerosol physical, optical, andchemical properties and their influences on the dependence of clouddevelopment on thermodynamic (i.e., lower tropospheric stability, LTS)conditions. Relationships between aerosol loading and cloud properties underdifferent dominant air-mass conditions and the magnitude of the firstindirect effect (FIE), as well as the sensitivity of the FIE to differentaerosol compositions, are examined. The seasonal variation in aerosol numberconcentration (Na) was not consistent with variations in aerosoloptical properties (i.e., scattering coefficient, σs, andcolumnar aerosol optical depth). Organics were found to have a largecontribution to small particle sizes. This contribution decreased during theparticle growth period. Under low-aerosol-loading conditions, the liquidwater path (LWP) and droplet effective radius (DER) significantly increasedwith increasing LTS, but, under high-aerosol-loading conditions, LWP and DERchanged little, indicating that aerosols significantly weakened thedependence of cloud development on LTS. The reduction in LWP and DER fromlow- to high-aerosol-loading conditions was greater in stable environments,suggesting that clouds under stable conditions are more susceptible toaerosol perturbations than those under more unstable conditions. Highaerosol loading weakened the increase in DER as LWP increased andstrengthened the increase in cloudmore »
-
An intimate knowledge of aerosol transport is essential in reducing the uncertainty of the impacts of aerosols on cloud development. Datasets from the U. S. Department of Energy (DOE) Atmospheric Radiation Measurement platform in the Southern Great Plains region (ARM-SGP) and the NASA Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) showed seasonal increases in aerosol loading and total carbon concentration during the spring and summer months (2008-2016) which was attributed to fire activity and smoke transport within North America. The monthly mean MERRA-2 surface carbonaceous aerosol mass concentration and ARM-SGP total carbon products were strongly correlated (R=0.82, p<0.01) along with a moderate correlation with the ARM-SGP cloud condensation nuclei (NCCN) product (0.5, p~0.1). The monthly mean ARM-SGP total carbon and NCCN products were strongly correlated (0.7, p~0.01). An additional product denoting fire number and coverage taken from the National Interagency Fire Center (NIFC) showed a moderate correlation with the MERRA-2 carbonaceous product (0.45, p<0.01) during the 1981-2016 warm season months (March-September). With respect to meteorological conditions, the correlation between the NIFC fire product and MERRA-2 850 hPa isobaric height anomalies was lower (0.26, p~0.13) due to the variability in the frequency, intensity, and number of fires inmore »