skip to main content


Title: Aerosol properties and their influences on low warm clouds during the Two-Column Aerosol Project
Abstract. Twelve months of measurements collected during the Two-ColumnAerosol Project field campaign at Cape Cod, Massachusetts, which started inthe summer of 2012, were used to investigate aerosol physical, optical, andchemical properties and their influences on the dependence of clouddevelopment on thermodynamic (i.e., lower tropospheric stability, LTS)conditions. Relationships between aerosol loading and cloud properties underdifferent dominant air-mass conditions and the magnitude of the firstindirect effect (FIE), as well as the sensitivity of the FIE to differentaerosol compositions, are examined. The seasonal variation in aerosol numberconcentration (Na) was not consistent with variations in aerosoloptical properties (i.e., scattering coefficient, σs, andcolumnar aerosol optical depth). Organics were found to have a largecontribution to small particle sizes. This contribution decreased during theparticle growth period. Under low-aerosol-loading conditions, the liquidwater path (LWP) and droplet effective radius (DER) significantly increasedwith increasing LTS, but, under high-aerosol-loading conditions, LWP and DERchanged little, indicating that aerosols significantly weakened thedependence of cloud development on LTS. The reduction in LWP and DER fromlow- to high-aerosol-loading conditions was greater in stable environments,suggesting that clouds under stable conditions are more susceptible toaerosol perturbations than those under more unstable conditions. Highaerosol loading weakened the increase in DER as LWP increased andstrengthened the increase in cloud optical depth (COD) with increasing LWP,resulting in changes in the interdependence of cloud properties. Under bothcontinental and marine air-mass conditions, high aerosol loading cansignificantly increase COD and decrease LWP and DER, narrowing theirdistributions. Magnitudes of the FIE estimated under continental air-massconditions ranged from 0.07±0.03 to 0.26±0.09 with a meanvalue of 0.16±0.03 and showed an increasing trend as LWP increased.The calculated FIE values for aerosols with a low fraction of organics aregreater than those for aerosols with a high fraction of organics. Thisimplies that clouds over regions dominated by aerosol particles containingmostly inorganics are more susceptible to aerosol perturbations, resultingin larger climate forcing, than clouds over regions dominated by organicaerosol particles.  more » « less
Award ID(s):
1837811
NSF-PAR ID:
10125917
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
19
Issue:
14
ISSN:
1680-7324
Page Range / eLocation ID:
9515 to 9529
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. The aerosol indirect effect on cloud microphysical and radiative propertiesis one of the largest uncertainties in climate simulations. In order toinvestigate the aerosol–cloud interactions, a total of 16 low-level stratuscloud cases under daytime coupled boundary-layer conditions are selectedover the southern Great Plains (SGP) region of the United States. Thephysicochemical properties of aerosols and their impacts on cloudmicrophysical properties are examined using data collected from theDepartment of Energy Atmospheric Radiation Measurement (ARM) facility at the SGP site. The aerosol–cloud interaction index (ACIr) is used to quantify the aerosol impacts with respect to cloud-droplet effective radius. The mean value of ACIr calculated from all selected samples is0.145±0.05 and ranges from 0.09 to 0.24 at a range of cloudliquid water paths (LWPs; LWP=20–300 g m−2). The magnitude of ACIr decreases with an increasing LWP, which suggests a diminished cloud microphysical response to aerosol loading, presumably due to enhanced condensational growth processes and enlarged particle sizes. The impact of aerosols with different light-absorbing abilities on the sensitivity of cloud microphysical responses is also investigated. In the presence of weak light-absorbing aerosols, the low-level clouds feature a higher number concentration of cloud condensation nuclei (NCCN) and smaller effective radii (re), while the opposite is true for strong light-absorbing aerosols. Furthermore, the mean activation ratio of aerosols to CCN (NCCN∕Na) for weakly (strongly) absorbing aerosols is 0.54 (0.45), owing to the aerosol microphysical effects, particularly the different aerosol compositions inferred by their absorptive properties. In terms of the sensitivity of cloud-droplet number concentration (Nd) to NCCN, the fraction of CCN that converted to cloud droplets (Nd∕NCCN) for the weakly (strongly) absorptive regime is 0.69 (0.54). The measured ACIr values in the weakly absorptive regime arerelatively higher, indicating that clouds have greater microphysicalresponses to aerosols, owing to the favorable thermodynamic condition. Thereduced ACIr values in the strongly absorptive regime are due to the cloud-layer heating effect induced by strong light-absorbing aerosols. Consequently, we expect larger shortwave radiative cooling effects from clouds in the weakly absorptive regime than those in the strongly absorptive regime. 
    more » « less
  2. null (Ed.)
    Over the eastern north Atlantic (ENA) ocean, a total of 21 non-drizzling single-layer marine boundary layer (MBL) stratus and stratocumulus cloud caseperiods are selected in order to investigate the impacts of the environmental variables on the aerosol-cloud interaction (ACI_r) using the ground-based measurements from the Department of Energy Atmospheric Radiation Measurement (ARM) facility at the ENA site during the period 2016 – 2018. The ACI_r represents the relative change of cloud-droplet effective radius r_e with respect to the relative change of cloud condensation nuclei (CCN) number concentration (N_CCN) in the water vapor stratified environment. The ACI_r values vary from -0.004 to 0.207 with increasing precipitable water vapor (PWV) conditions, indicating that r_e is more sensitive to the CCN loading under sufficient water vapor supply, owing to the combined effect of enhanced condensational growth and coalescence processes associated with higher N_c and PWV. The environmental effects on ACI_r are examined by stratifying the data into different lower tropospheric stability (LTS) and vertical component of turbulence kinetic energy (TKE_w) regimes. The higher LTS normally associates with a more adiabatic cloud layer and a lower boundary layer and thus results in higher CCN to cloud droplet conversion and ACI_r. The ACI_r values under a range of PWV double from low TKE_w to high TKE_w regime, indicating a strong impact of turbulence on the ACI_r. The stronger boundary layer turbulence represented by higher TKE_w strengthens the connection and interaction between cloud microphysical properties and the underneath CCN and moisture sources. With sufficient water vapor and low CCN loading, the active coalescence process broadens the cloud droplet size distribution spectra, and consequently results in an enlargement of r_e. The enhanced N_c conversion and condensational growth induced by more intrusions of CCN effectively decrease r_e, which jointly presents as the increased ACI_r. The TKE_w median value of 0.08 m^2 s^(-2) suggests a feasible way in distinguishing the turbulence-enhanced aerosol-cloud interaction in non-drizzling MBL clouds. 
    more » « less
  3. Abstract The Southern Ocean is covered by a large amount of clouds with high cloud albedo. However, as reported by previous climate model intercomparison projects, underestimated cloudiness and overestimated absorption of solar radiation (ASR) over the Southern Ocean lead to substantial biases in climate sensitivity. The present study revisits this long-standing issue and explores the uncertainty sources in the latest CMIP6 models. We employ 10-year satellite observations to evaluate cloud radiative effect (CRE) and cloud physical properties in five CMIP6 models that provide comprehensive output of cloud, radiation, and aerosol. The simulated longwave, shortwave, and net CRE at the top of atmosphere in CMIP6 are comparable with the CERES satellite observations. Total cloud fraction (CF) is also reasonably simulated in CMIP6, but the comparison of liquid cloud fraction (LCF) reveals marked biases in spatial pattern and seasonal variations. The discrepancies between the CMIP6 models and the MODIS satellite observations become even larger in other cloud macro- and micro-physical properties, including liquid water path (LWP), cloud optical depth (COD), and cloud effective radius, as well as aerosol optical depth (AOD). However, the large underestimation of both LWP and cloud effective radius (regional means ∼20% and 11%, respectively) results in relatively smaller bias in COD, and the impacts of the biases in COD and LCF also cancel out with each other, leaving CRE and ASR reasonably predicted in CMIP6. An error estimation framework is employed, and the different signs of the sensitivity errors and biases from CF and LWP corroborate the notions that there are compensating errors in the modeled shortwave CRE. Further correlation analyses of the geospatial patterns reveal that CF is the most relevant factor in determining CRE in observations, while the modeled CRE is too sensitive to LWP and COD. The relationships between cloud effective radius, LWP, and COD are also analyzed to explore the possible uncertainty sources in different models. Our study calls for more rigorous calibration of detailed cloud physical properties for future climate model development and climate projection. 
    more » « less
  4. null (Ed.)
    With their extensive coverage, marine low clouds greatly impact global climate. Presently, marine low clouds are poorly represented in global climate models, and the response of marine low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary layer clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. In addition, the ENA is periodically impacted by continental aerosols, making it an excellent location to study the cloud condensation nuclei (CCN) budget in a remote marine region periodically perturbed by anthropogenic emissions, and to investigate the impacts of long-range transport of aerosols on remote marine clouds. The Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) campaign was motivated by the need of comprehensive in-situ measurements for improving the understanding of marine boundary layer CCN budget, cloud and drizzle microphysics, and the impact of aerosol on marine low cloud and precipitation. The airborne deployments took place from June 21 to July 20, 2017 and January 15 to February 18, 2018 in the Azores. The flights were designed to maximize the synergy between in-situ airborne measurements and ongoing long-term observations at a ground site. Here we present measurements, observation strategy, meteorological conditions during the campaign, and preliminary findings. Finally, we discuss future analyses and modeling studies that improve the understanding and representation of marine boundary layer aerosols, clouds, precipitation, and the interactions among them. 
    more » « less
  5. Abstract

    This study compares macrophysical and microphysical properties of single‐layered, liquid‐dominant MBL clouds from the Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean (MARCUS) (above 60°S) and the ARM East North Atlantic (ENA) site during the Aerosol and Cloud Experiments in Eastern North Atlantic (ACE‐ENA) field campaign. A total of 1,136 (16.5% of clouds) and 6,034 5‐min cloud samples are selected from MARCUS and ARM ENA in this study. MARCUS clouds have higher cloud‐top heights, thicker cloud layers, larger liquid water path, and colder cloud temperatures than ENA. Thinner, warmer MBL clouds at ENA can contain higher layer‐mean liquid water content due to higher cloud and ocean surface temperatures along with greater precipitable water vapor (PWV). MARCUS has a higher drizzle frequency rate (71.8%) than ENA (45.1%). Retrieved cloud and drizzle microphysical properties from each field campaign show key differences. MARCUS clouds feature smaller cloud droplets, whereas ENA clouds have larger cloud droplets, especially at the upper region of the cloud. From cloud top to cloud base, drizzle drop sizes increase while number concentrations decrease. Drizzle drop radius and number concentration decrease from cloud base to drizzle base due to net evaporation, and MARCUS' lower specific humidity leads to a higher drizzle base than ENA. The broader surface pressure and lower tropospheric stability (LTS) distributions during MARCUS have demonstrated that there are different synoptic patterns for selected cases during MARCUS with less PWV, while ENA is dominated by high pressure systems with nearly doubled PWV.

     
    more » « less