A spatially distributed network contains a large amount of agents with limited sensing, data processing, and communication capabilities. Recent technological advances have opened up possibilities to deploy spatially distributed networks for signal sampling and reconstruction. In this paper, we introduce a graph structure for a distributed sampling and reconstruction system by coupling agents in a spatially distributed network with innovative positions of signals. A fundamental problem in sampling theory is the robustness of signal reconstruction in the presence of sampling noises. For a distributed sampling and reconstruction system, the robustness could be reduced to the stability of its sensing matrix. In this paper, we split a distributed sampling and reconstruction system into a family of overlapping smaller subsystems, and we show that the stability of the sensing matrix holds if and only if its quasi-restrictions to those subsystems have uniform stability. This new stability criterion could be pivotal for the design of a robust distributed sampling and reconstruction system against supplement, replacement and impairment of agents, as we only need to check the uniform stability of affected subsystems. In this paper, we also propose an exponentially convergent distributed algorithm for signal reconstruction, that provides a suboptimal approximation to the original signal in the presence of bounded sampling noises.
more »
« less
VAE for Joint Source-Channel Coding of Distributed Gaussian Sources over AWGN MAC
In this paper, we introduce a framework for Joint Source-Channel Coding of distributed Gaussian sources over a multiple access AWGN channel. Although there are prior works that have studied this, they either strongly rely on intuition to design encoders and decoder or require the knowledge of the complete joint distribution of all the distributed sources. Our system overcomes this. We model our system as a Variational Autoencoder and leverage insight provided by this connection to propose a crucial regularization mechanism for learning. This allows us to beat the state of the art by improving the signal reconstruction quality by almost 1dB for certain configurations. The end-to-end learned system is also found to be robust to channel condition variations of ±5dB and shows a drop in signal reconstruction quality by at most 1dB. Finally, we propose a novel lower bound on the optimal distortion in signal reconstruction and empirically showcase the tightness of the bound in comparison with the existing bound.
more »
« less
- Award ID(s):
- 2003002
- PAR ID:
- 10293689
- Date Published:
- Journal Name:
- IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Despite the advent of numerous Internet-of-Things (IoT) applications, recent research demonstrates potential side-channel vulnerabilities exploiting sensors which are used for event and environment monitoring. In this paper, we propose a new side-channel attack, where a network of distributed non-acoustic sensors can be exploited by an attacker to launch an eavesdropping attack by reconstructing intelligible speech signals. Specifically, we present PitchIn to demonstrate the feasibility of speech reconstruction from non-acoustic sensor data collected offline across networked devices. Unlike speech reconstruction which requires a high sampling frequency (e.g., > 5 KHz), typical applications using non-acoustic sensors do not rely on richly sampled data, presenting a challenge to the speech reconstruction attack. Hence, PitchIn leverages a distributed form of Time Interleaved Analog-Digital-Conversion (TIADC) to approximate a high sampling frequency, while maintaining low per-node sampling frequency. We demonstrate how distributed TI-ADC can be used to achieve intelligibility by processing an interleaved signal composed of different sensors across networked devices. We implement PitchIn and evaluate reconstructed speech signal intelligibility via user studies. PitchIn has word recognition accuracy as high as 79%. Though some additional work is required to improve accuracy, our results suggest that eavesdropping using a fusion of non-acoustic sensors is a real and practical threat.more » « less
-
Multi-user massive MIMO signal detection from one-bit received measurements strongly depends on the wireless channel. To this end, majority of the model and learning-based approaches address detector design for the rich-scattering, homogeneous Rayleigh fading channel. Our work proposes detection for one-bit massive MIMO for the lower diversity mmWave channel. We analyze the limitations of the current state-of-the-art gradient descent (GD)-based joint multiuser detection of one-bit received signals for the mmWave channels. Addressing these, we introduce a new framework to ensure equitable per-user performance, in spite of joint multi-user detection. This is realized by means of: (i) a parametric deep learning system, i.e., the mmW-ROBNet, (ii) a constellation-aware loss function, and (iii) a hierarchical detection training strategy. The experimental results corroborate this proposed approach for equitable per-user detection.more » « less
-
This work presents an interference-adaptive Gallium Nitride (GaN) low-noise amplifier (LNA) front-end with orthogonal frequency and linearity tuning for applications in communication base stations, radar and electronic warfare (EW). The system operates between 2–6 GHz and provides a sub 5 ms tuning time for an input power tuning range of 40 dB. The orthogonal tuning consists of two phases: 1. frequency tuning with four tunable bandpass and bandstop filters for interference rejection, 2. linearity tuning with a combination of coarse tuning through look-up table (LUT) and fine-tuning through incremental adaptation to trade off power with linearity. GaN LNA’s linearity can be adjusted between P textsubscript 1dB,IN = -10 and 1.5 dBm with output P textsubscript 1dB up to 25 dBm (11.5 dB range) with the LNA power changing from 500 mW to 2 W (x4 increase). The average LNA power with orthogonal frequency and linearity tuning decreases by 56% as compared with the system operating at the worst-case no tuning condition. Two systems involving commercial filters and custom cavity resonator-based filters were constructed. The filters further increase the system P textsubscript 1dB,IN by the filter rejection of the interference signal. The rest of the controls consume about 10% of the worst-case condition LNA power.more » « less
-
Analog Joint Source-Channel Coding for Distributed Functional Compression using Deep Neural Networksnull (Ed.)In this paper, we study Joint Source-Channel Coding (JSCC) for distributed analog functional compression over both Gaussian Multiple Access Channel (MAC) and AWGN channels. Notably, we propose a deep neural network based solution for learning encoders and decoders. We propose three methods of increasing performance. The first one frames the problem as an autoencoder; the second one incorporates the power constraint in the objective by using a Lagrange multiplier; the third method derives the objective from the information bottleneck principle. We show that all proposed methods are variational approximations to upper bounds on the indirect rate-distortion problem’s minimization objective. Further, we show that the third method is the variational approximation of a tighter upper bound compared to the other two. Finally, we show empirical performance results for image classification. We compare with existing work and showcase the performance improvement yielded by the proposed methods.more » « less
An official website of the United States government

