skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nutrient and stress tolerance traits linked to fungal responses to global change
In this case study analysis, we identified fungal traits that were associated with the responses of taxa to 4 global change factors: elevated CO2, warming and drying, increased precipitation, and nitrogen (N) enrichment. We developed a trait-based framework predicting that as global change increases limitation of a given nutrient, fungal taxa with traits that target that nutrient will represent a larger proportion of the community (and vice versa). In addition, we expected that warming and drying and N enrichment would generate environmental stress for fungi and may select for stress tolerance traits. We tested the framework by analyzing fungal community data from previously published field manipulations and linking taxa to functional gene traits from the MycoCosm Fungal Portal. Altogether, fungal genera tended to respond similarly to 3 elements of global change: increased precipitation, N enrichment, and warming and drying. The genera that proliferated under these changes also tended to possess functional genes for stress tolerance, which suggests that these global changes—even increases in precipitation—could have caused environmental stress that selected for certain taxa. In addition, these genera did not exhibit a strong capacity for C breakdown or P acquisition, so soil C turnover may slow down or remain unchanged following shifts in fungal community composition under global change. Since we did not find strong evidence that changes in nutrient limitation select for taxa with traits that target the more limiting nutrient, we revised our trait-based framework. The new framework sorts fungal taxa into Stress Tolerating versus C and P Targeting groups, with the global change elements of increased precipitation, warming and drying, and N enrichment selecting for the stress tolerators.  more » « less
Award ID(s):
1912525
PAR ID:
10293774
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Elementa: Science of the Anthropocene
Volume:
9
Issue:
1
ISSN:
2325-1026
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Despite recent advances, we still do not understand how chronic nutrient enrichment impacts coastal plant community structure and function. We aimed to clarify such impacts by testing for differences in ecosystem productivity and multiple community metrics in response to fertilization. We established plots in 2015 consisting of control (C), nitrogen (N), phosphorus (P), and nitrogen + phosphorus (NP) treatments in a mid-Atlantic coastal grassland. In 2017 we collected aboveground biomass, functional traits, and species abundance for each plot. Our findings indicate a synergistic co-limitation, such that NP plots were more productive than all other treatments. A combination of traits responsible for competition and nutrient uptake (i.e., height and δ15N) caused trait-based divergence of N and NP plots from C and P plots. Functional trait-based composition patterns differed from species composition and lifeform abundance patterns, highlighting complexities of community response to nutrient enrichment. While trait-based functional alpha-diversity did not differ among nutrient treatments, it was positively correlated with biomass production, suggesting nutrients may impact functional alpha-diversity indirectly through increased productivity. Increased functional alpha-diversity could be a mechanism of co-existence emerging as productivity increases. These results have important implications for understanding how plant communities in low-productivity coastal systems are altered by fertilization. 
    more » « less
  2. Climate change will increase soil drying, altering microbial communities via increasing water stress and decreasing resource availability. The responses of these microbial communities to changing environments is likely governed by physiological tradeoffs between high yield, resource acquisition, and stress tolerance (Y-A-S framework). We leveraged a unique field experiment that manipulates both drought and carbon availability across two years and three land uses, and we used both metagenomic and bioassay indicators of the three microbial community traits to test the following hypotheses: 1. Drought increases microbial allocation to stress tolerance functions, at the expense of growth and resource acquisition. 2. Because microbes are resource-limited under drought, increased carbon will enable greater expression of stress tolerance. 3. All three key life history traits described in the YAS framework will trade off, especially when resources are limited. Drought did increase microbial physiological investment in stress tolerance (measured via trehalose production), but we saw few other changes in microbial communities under drought. Carbon addition increased resource acquisition (measured via enzyme activity and resource acquisition gene abundance) and stress tolerance (trehalose assay), but did so in both drought and average rainfall environments. We found no evidence of trait tradeoffs, as we found no significant negative correlations between traits (measured via bioassay and metagenomics). In summary, we found C addition, and to a lesser extent, drought, both altered microbial community function and functional genes. However, resources did not alter drought response in a way that was consistent with theory of life history tradeoffs. 
    more » « less
  3. If we better understand how fungal responses to global change are governed by their traits, we can improve predictions of fungal community composition and ecosystem function. Specifically, we can examine trade-offs among traits, in which the allocation of finite resources toward one trait reduces the investment in others. We hypothesized that trade-offs among fungal traits relating to rapid growth, resource capture, and stress tolerance sort fungal species into discrete life history strategies. We used the Biolog Filamentous Fungi database to calculate maximum growth rates of 37 fungal species and then compared them to their functional traits from the fun fun database. In partial support of our hypothesis, maximum growth rate displayed a negative relationship with traits related to resource capture. Moreover, maximum growth rate displayed a positive relationship with amino acid permease, forming a putative Fast Growth life history strategy. A second putative life history strategy is characterized by a positive relationship between extracellular enzymes, including cellobiohydrolase 6, cellobiohydrolase 7, crystalline cellulase AA9, and lignin peroxidase. These extracellular enzymes were negatively related to chitosanase 8, an enzyme that can break down a derivative of chitin. Chitosanase 8 displayed a positive relationship with many traits that were hypothesized to cluster separately, forming a putative Blended life history strategy characterized by certain resource capture, fast growth, and stress tolerance traits. These trait relationships complement previously explored microbial trait frameworks, such as the Competitor-Stress Tolerator-Ruderal and the Yield-Resource Acquisition-Stress Tolerance schemes. 
    more » « less
  4. Abstract We use the Multiple Element Limitation (MEL) model to examine responses of 12 ecosystems to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in precipitation. Ecosystems respond synergistically to elevated CO2, warming, and decreased precipitation combined because higher water‐use efficiency with elevated CO2and higher fertility with warming compensate for responses to drought. Response to elevated CO2, warming, and increased precipitation combined is additive. We analyze changes in ecosystem carbon (C) based on four nitrogen (N) and four phosphorus (P) attribution factors: (1) changes in total ecosystem N and P, (2) changes in N and P distribution between vegetation and soil, (3) changes in vegetation C:N and C:P ratios, and (4) changes in soil C:N and C:P ratios. In the combined CO2and climate change simulations, all ecosystems gain C. The contributions of these four attribution factors to changes in ecosystem C storage varies among ecosystems because of differences in the initial distributions of N and P between vegetation and soil and the openness of the ecosystem N and P cycles. The net transfer of N and P from soil to vegetation dominates the C response of forests. For tundra and grasslands, the C gain is also associated with increased soil C:N and C:P. In ecosystems with symbiotic N fixation, C gains resulted from N accumulation. Because of differences in N versus P cycle openness and the distribution of organic matter between vegetation and soil, changes in the N and P attribution factors do not always parallel one another. Differences among ecosystems in C‐nutrient interactions and the amount of woody biomass interact to shape ecosystem C sequestration under simulated global change. We suggest that future studies quantify the openness of the N and P cycles and changes in the distribution of C, N, and P among ecosystem components, which currently limit understanding of nutrient effects on C sequestration and responses to elevated CO2and climate change. 
    more » « less
  5. null (Ed.)
    Fungi are important decomposers in terrestrial ecosystems, so their responses to climate change might influence carbon (C) and nitrogen (N) dynamics. We investigated whether growth and activity of fungi under drought conditions were structured by trade-offs among traits in 15 fungal isolates from a Mediterranean Southern California grassland. We inoculated fungi onto sterilized litter that was incubated at three moisture levels (4, 27, and 50% water holding capacity, WHC). For each isolate, we characterized traits that described three potential lifestyles within the newly proposed “YAS” framework: growth yield, resource acquisition, and stress tolerance. Specifically, we measured fungal hyphal length per unit litter decomposition for growth yield; the potential activities of the extracellular enzymes cellobiohydrolase (CBH), β -glucosidase (BG), β -xylosidase (BX), and N-acetyl- β - D -glucosaminidase (NAG) for resource acquisition; and ability to grow in drought vs. higher moisture levels for drought stress tolerance. Although, we had hypothesized that evolutionary and physiological trade-offs would elicit negative relationships among traits, we found no supporting evidence for this hypothesis. Across isolates, growth yield, drought stress tolerance, and extracellular enzyme activities were not significantly related to each other. Thus, it is possible that drought-induced shifts in fungal community composition may not necessarily lead to changes in fungal biomass or decomposer ability in this arid grassland. 
    more » « less