skip to main content


Title: A flexible analytic model of cosmic variance in the first billion years
ABSTRACT Cosmic variance is the intrinsic scatter in the number density of galaxies due to fluctuations in the large-scale dark matter density field. In this work, we present a simple analytic model of cosmic variance in the high-redshift Universe (z ∼ 5–15). We assume that galaxies grow according to the evolution of the halo mass function, which we allow to vary with large-scale environment. Our model produces a reasonable match to the observed ultraviolet (UV) luminosity functions in this era by regulating star formation through stellar feedback and assuming that the UV luminosity function is dominated by recent star formation. We find that cosmic variance in the UV luminosity function is dominated by the variance in the underlying dark matter halo population, and not by differences in halo accretion or the specifics of our stellar feedback model. We also find that cosmic variance dominates over Poisson noise for future high-z surveys except for the brightest sources or at very high redshifts (z ≳ 12). We provide a linear approximation of cosmic variance for a variety of redshifts, magnitudes, and survey areas through the public python package galcv. Finally, we introduce a new method for incorporating priors on cosmic variance into estimates of the galaxy luminosity function and demonstrate that it significantly improves constraints on that important observable.  more » « less
Award ID(s):
1812458
NSF-PAR ID:
10293903
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
499
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2401 to 2415
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The formation of the first galaxies during cosmic dawn and reionization (at redshifts z = 5–30), triggered the last major phase transition of our universe, as hydrogen evolved from cold and neutral to hot and ionized. The 21-cm line of neutral hydrogen will soon allow us to map these cosmic milestones and study the galaxies that drove them. To aid in interpreting these observations, we upgrade the publicly available code 21cmFAST. We introduce a new, flexible parametrization of the additive feedback from: an inhomogeneous, H2-dissociating (Lyman–Werner; LW) background; and dark matter – baryon relative velocities; which recovers results from recent, small-scale hydrodynamical simulations with both effects. We perform a large, ‘best-guess’ simulation as the 2021 installment of the Evolution of 21-cm Structure (EOS) project. This improves the previous release with a galaxy model that reproduces the observed UV luminosity functions (UVLFs), and by including a population of molecular-cooling galaxies. The resulting 21-cm global signal and power spectrum are significantly weaker, primarily due to a more rapid evolution of the star formation rate density required to match the UVLFs. Nevertheless, we forecast high signal-to-noise detections for both HERA and the SKA. We demonstrate how the stellar-to-halo mass relation of the unseen, first galaxies can be inferred from the 21-cm evolution. Finally, we show that the spatial modulation of X-ray heating due to relative velocities provides a unique acoustic signature that is detectable at z ≈ 10–15 in our fiducial model. Ours are the first public simulations with joint inhomogeneous LW and relative-velocity feedback across the entire cosmic dawn and reionization, and we make them available at this link https://scholar.harvard.edu/julianbmunoz/eos-21.

     
    more » « less
  2. ABSTRACT

    JWST observations have revealed a population of galaxies bright enough that potentially challenge standard galaxy formation models in the Λ cold dark matter (ΛCDM) cosmology. Using a minimal empirical framework, we investigate the influence of variability on the rest-frame ultra-violet (UV) luminosity function of galaxies at z ≥ 9. Our study differentiates between the median UV radiation yield and the variability of UV luminosities of galaxies at a fixed dark matter halo mass. We primarily focus on the latter effect, which depends on halo assembly and galaxy formation processes and can significantly increase the abundance of UV-bright galaxies due to the upscatter of galaxies in lower-mass haloes. We find that a relatively low level of variability, σUV ≈ 0.75 mag, matches the observational constraints at z ≈ 9. However, increasingly larger σUV is necessary when moving to higher redshifts, reaching $\sigma _{\rm UV} \approx 2.0\, (2.5)\, {\rm mag}$ at z ≈ 12 (16). This implied variability is consistent with expectations of physical processes in high-redshift galaxies such as bursty star formation and dust clearance during strong feedback cycles. Photometric constraints from JWST at z ≳ 9 therefore can be reconciled with a standard ΛCDM-based galaxy formation model calibrated at lower redshifts without the need for adjustments to the median UV radiation yield.

     
    more » « less
  3. null (Ed.)
    ABSTRACT The James Webb Space Telescope (JWST) is expected to observe galaxies at z > 10 that are presently inaccessible. Here, we use a self-consistent empirical model, the universemachine, to generate mock galaxy catalogues and light-cones over the redshift range z = 0−15. These data include realistic galaxy properties (stellar masses, star formation rates, and UV luminosities), galaxy–halo relationships, and galaxy–galaxy clustering. Mock observables are also provided for different model parameters spanning observational uncertainties at z < 10. We predict that Cycle 1 JWST surveys will very likely detect galaxies with M* > 107 M⊙ and/or M1500 < −17 out to at least z ∼ 13.5. Number density uncertainties at z > 12 expand dramatically, so efforts to detect z > 12 galaxies will provide the most valuable constraints on galaxy formation models. The faint-end slopes of the stellar mass/luminosity functions at a given mass/luminosity threshold steepen as redshift increases. This is because observable galaxies are hosted by haloes in the exponentially falling regime of the halo mass function at high redshifts. Hence, these faint-end slopes are robustly predicted to become shallower below current observable limits (M* < 107 M⊙ or M1500 > −17). For reionization models, extrapolating luminosity functions with a constant faint-end slope from M1500 = −17 down to M1500 = −12 gives the most reasonable upper limit for the total UV luminosity and cosmic star formation rate up to z ∼ 12. We compare to three other empirical models and one semi-analytic model, showing that the range of predicted observables from our approach encompasses predictions from other techniques. Public catalogues and light-cones for common fields are available online. 
    more » « less
  4. ABSTRACT The James Webb Space Telescope (JWST) promises to revolutionize our understanding of the early Universe, and contrasting its upcoming observations with predictions of the Λ cold dark matter model requires detailed theoretical forecasts. Here, we exploit the large dynamic range of the IllustrisTNG simulation suite, TNG50, TNG100, and TNG300, to derive multiband galaxy luminosity functions from z = 2 to z = 10. We put particular emphasis on the exploration of different dust attenuation models to determine galaxy luminosity functions for the rest-frame ultraviolet (UV), and apparent wide NIRCam bands. Our most detailed dust model is based on continuum Monte Carlo radiative transfer calculations employing observationally calibrated dust properties. This calibration results in constraints on the redshift evolution of the dust attenuation normalization and dust-to-metal ratios yielding a stronger redshift evolution of the attenuation normalization compared to most previous theoretical studies. Overall we find good agreement between the rest-frame UV luminosity functions and observational data for all redshifts, also beyond the regimes used for the dust model calibrations. Furthermore, we also recover the observed high-redshift (z = 4–6) UV luminosity versus stellar mass relation, the H α versus star formation rate relation, and the H α luminosity function at z = 2. The bright end (MUV > −19.5) cumulative galaxy number densities are consistent with observational data. For the F200W NIRCam band, we predict that JWST will detect ∼80 (∼200) galaxies with a signal-to-noise ratio of 10 (5) within the NIRCam field of view, $2.2\times 2.2 \, {\rm arcmin}^{2}$, for a total exposure time of $10^5\, {\rm s}$ in the redshift range z = 8 ± 0.5. These numbers drop to ∼10 (∼40) for an exposure time of $10^4\, {\rm s}$. 
    more » « less
  5. null (Ed.)
    We present a new prospective analysis of deep multi-band imaging with the James Webb Space Telescope (JWST). In this work, we investigate the recovery of high-redshift 5 <   z  <  12 galaxies through extensive image simulations of accepted JWST programs, including the Early Release Science in the EGS field and the Guaranteed Time Observations in the HUDF. We introduced complete samples of ∼300 000 galaxies with stellar masses of log( M * / M ⊙ ) > 6 and redshifts of 0 <   z  <  15, as well as galactic stars, into realistic mock NIRCam, MIRI, and HST images to properly describe the impact of source blending. We extracted the photometry of the detected sources, as in real images, and estimated the physical properties of galaxies through spectral energy distribution fitting. We find that the photometric redshifts are primarily limited by the availability of blue-band and near-infrared medium-band imaging. The stellar masses and star formation rates are recovered within 0.25 and 0.3 dex, respectively, for galaxies with accurate photometric redshifts. Brown dwarfs contaminating the z  >  5 galaxy samples can be reduced to < 0.01 arcmin −2 with a limited impact on galaxy completeness. We investigate multiple high-redshift galaxy selection techniques and find that the best compromise between completeness and purity at 5 <   z  <  10 using the full redshift posterior probability distributions. In the EGS field, the galaxy completeness remains higher than 50% at magnitudes m UV  <  27.5 and at all redshifts, and the purity is maintained above 80 and 60% at z  ≤ 7 and 10, respectively. The faint-end slope of the galaxy UV luminosity function is recovered with a precision of 0.1–0.25, and the cosmic star formation rate density within 0.1 dex. We argue in favor of additional observing programs covering larger areas to better constrain the bright end. 
    more » « less