skip to main content


Title: Sub-damped Lyman α systems in the XQ-100 survey – II. Chemical evolution at 2.4 ≤ z ≤ 4.3
ABSTRACT We present the measured gas-phase metal column densities in 155 sub-damped Ly α systems (subDLAs) with the aim to investigate the contribution of subDLAs to the chemical evolution of the Universe. The sample was identified within the absorber-blind XQ-100 quasar spectroscopic survey over the redshift range 2.4 ≤ zabs ≤ 4.3. Using all available column densities of the ionic species investigated (mainly C iv, Si ii, Mg ii, Si iv, Al ii, Fe ii, C ii, and O i; in order of decreasing detection frequency), we estimate the ionization-corrected gas-phase metallicity of each system using Markov chain Monte Carlo techniques to explore a large grid of cloudy ionization models. Without accounting for ionization and dust depletion effects, we find that the H i-weighted gas-phase metallicity evolution of subDLAs is consistent with damped Ly α systems (DLAs). When ionization corrections are included, subDLAs are systematically more metal poor than DLAs (between ≈0.5σ and ≈3σ significance) by up to ≈1.0 dex over the redshift range 3 ≤ zabs ≤ 4.3. The correlation of gas phase [Si/Fe] with metallicity in subDLAs appears to be consistent with that of DLAs, suggesting that the two classes of absorbers have a similar relative dust depletion pattern. As previously seen for Lyman limit systems, the gas phase [C/O] in subDLAs remains constantly solar for all metallicities indicating that both subDLAs and Lyman limit systems could trace carbon-rich ejecta, potentially in circumgalactic environments.  more » « less
Award ID(s):
1751404
NSF-PAR ID:
10293907
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
502
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
4009 to 4025
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We use medium- and high-resolution spectroscopy of close pairs of quasars to analyze the circumgalactic medium (CGM) surrounding 32 damped Lyαabsorption systems (DLAs). The primary quasar sightline in each pair probes an intervening DLA in the redshift range 1.6 <zabs< 3.5, such that the secondary sightline probes absorption from Lyαand a large suite of metal-line transitions (including Oi, Cii, Civ, Siii, and Siiv) in the DLA host galaxy’s CGM at transverse distances 24 kpc ≤R≤ 284 kpc. Analysis of Lyαin the CGM sightlines shows an anticorrelation betweenRand Hicolumn density (NHI) with 99.8% confidence, similar to that observed around luminous galaxies. The incidences of Ciiand SiiiwithN> 1013cm−2within 100 kpc of DLAs are larger by 2σthan those measured in the CGM of Lyman break galaxies (Cf(NCII) > 0.89 andCf(NSiII)=0.750.17+0.12). Metallicity constraints derived from ionic ratios for nine CGM systems with negligible ionization corrections andNHI> 1018.5cm−2show a significant degree of scatter (with metallicities/limits across the range2.06logZ/Z0.75), suggesting inhomogeneity in the metal distribution in these environments. Velocity widths of Civλ1548 and low-ionization metal species in the DLA versus CGM sightlines are strongly (>2σ) correlated, suggesting that they trace the potential well of the host halo overR≲ 300 kpc scales. At the same time, velocity centroids for Civλ1548 differ in DLA versus CGM sightlines by >100 km s−1for ∼50% of velocity components, but few components have velocities that would exceed the escape velocity assuming dark matter host halos of ≥1012M.

     
    more » « less
  2. null (Ed.)
    ABSTRACT We present a systematic investigation of physical conditions and elemental abundances in four optically thick Lyman-limit systems (LLSs) at z = 0.36–0.6 discovered within the cosmic ultraviolet baryon survey (CUBS). Because intervening LLSs at z < 1 suppress far-UV (ultraviolet) light from background QSOs, an unbiased search of these absorbers requires a near-UV-selected QSO sample, as achieved by CUBS. CUBS LLSs exhibit multicomponent kinematic structure and a complex mix of multiphase gas, with associated metal transitions from multiple ionization states such as C ii, C iii, N iii, Mg ii, Si ii, Si iii, O ii, O iii, O vi, and Fe ii absorption that span several hundred km s−1 in line-of-sight velocity. Specifically, higher column density components (log N(H i)/cm−2≳ 16) in all four absorbers comprise dynamically cool gas with $\langle T \rangle =(2\pm 1) \times 10^4\,$K and modest non-thermal broadening of $\langle b_\mathrm{nt} \rangle =5\pm 3\,$km s−1. The high quality of the QSO absorption spectra allows us to infer the physical conditions of the gas, using a detailed ionization modelling that takes into account the resolved component structures of H i and metal transitions. The range of inferred gas densities indicates that these absorbers consist of spatially compact clouds with a median line-of-sight thickness of $160^{+140}_{-50}$ pc. While obtaining robust metallicity constraints for the low density, highly ionized phase remains challenging due to the uncertain $N\mathrm{(H\, {\small I})}$, we demonstrate that the cool-phase gas in LLSs has a median metallicity of $\mathrm{[\alpha /H]_{1/2}}=-0.7^{+0.1}_{-0.2}$, with a 16–84 percentile range of [α/H] = (−1.3, −0.1). Furthermore, the wide range of inferred elemental abundance ratios ([C/α], [N/α], and [Fe/α]) indicate a diversity of chemical enrichment histories. Combining the absorption data with deep galaxy survey data characterizing the galaxy environment of these absorbers, we discuss the physical connection between star-forming regions in galaxies and diffuse gas associated with optically thick absorption systems in the z < 1 circumgalactic medium. 
    more » « less
  3. Abstract

    Abundances of chemical elements in the interstellar and circumgalactic media of high-redshift galaxies offer important constraints on the nucleosynthesis by early generations of stars. Damped Lyαabsorbers (DLAs) in spectra of high-redshift background quasars are excellent sites for obtaining robust measurements of element abundances in distant galaxies. Past studies of DLAs at redshiftsz> 4 have measured abundances of ≲0.01 solar. Here we report the discovery of a DLA atz= 4.7372 with an exceptionally high degree of chemical enrichment. We estimate the Hicolumn density in this absorber to be log (NH I/cm−2) = 20.48 ± 0.15. Our analysis shows unusually high abundances of carbon and oxygen ([C/H] = 0.88 ± 0.17, [O/H] = 0.71 ± 0.16). Such a high level of enrichment a mere 1.2 Gyr after the Big Bang is surprising because of insufficient time for the required amount of star formation. To our knowledge, this is the first supersolar absorber found atz> 4.5. We find the abundances of Si and Mg to be [Si/H] =0.560.35+0.40and [Mg/H] =0.590.50+0.27, confirming the metal-rich nature of this absorber. By contrast, Fe shows a much lower abundance ([Fe/H] =1.530.15+0.15). We discuss implications of our results for galactic chemical evolution models. The metallicity of this absorber is higher than that of any other known DLA and is >2 orders of magnitude above predictions of chemical evolution models and theNH I-weighted mean metallicity from previous studies atz> 4.5. The relative abundances (e.g., [O/Fe] = 2.29 ± 0.05, [C/Fe] = 2.46 ± 0.08) are also highly unusual compared to predictions for enrichment by early stars.

     
    more » « less
  4. Abstract We report Hubble Space Telescope Cosmic Origins Spectrograph spectroscopy of 10 quasars with foreground star-forming galaxies at 0.02 < z < 0.14 within impact parameters of ∼1–7 kpc. We detect damped/sub-damped Ly α (DLA/sub-DLA) absorption in 100% of cases where no higher-redshift Lyman-limit systems extinguish the flux at the expected wavelength of Ly α absorption, obtaining the largest targeted sample of DLA/sub-DLAs in low-redshift galaxies. We present absorption measurements of neutral hydrogen and metals. Additionally, we present Green Bank Telescope 21 cm emission measurements for five of the galaxies (including two detections). Combining our sample with the literature, we construct a sample of 117 galaxies associated with DLA/sub-DLAs spanning 0 < z < 4.4, and examine trends between gas and stellar properties, and with redshift. The H i column density is anticorrelated with impact parameter and stellar mass. More massive galaxies appear to have gas-rich regions out to larger distances. The specific star formation rate (sSFR) of absorbing galaxies increases with redshift and decreases with M *, consistent with evolution of the star formation main sequence (SFMS). However, ∼20% of absorbing galaxies lie below the SFMS, indicating that some DLA/sub-DLAs trace galaxies with longer-than-typical gas-depletion timescales. Most DLA/sub-DLA galaxies with 21 cm emission have higher H i masses than typical galaxies with comparable M *. High M HI / M * ratios and high sSFRs in DLA/sub-DLA galaxies with M * < 10 9 M ⊙ suggest these galaxies may be gas-rich because of recent gas accretion rather than inefficient star formation. Our study demonstrates the power of absorption and emission studies of DLA/sub-DLA galaxies for extending galactic evolution studies to previously under-explored regimes of low M * and low SFR. 
    more » « less
  5. ABSTRACT

    The ionizing photon escape fraction [Lyman continuum (LyC) fesc] of star-forming galaxies is the single greatest unknown in the reionization budget. Stochastic sightline effects prohibit the direct separation of LyC leakers from non-leakers at significant redshifts. Here we circumvent this uncertainty by inferring fesc using resolved (R > 4000) Lyman α (Lyα) profiles from the X-SHOOTER Lyα survey at z = 2 (XLS-z2). With empirically motivated criteria, we use Lyα profiles to select leakers ($f_{\mathrm{ esc}} > 20{{\ \rm per\ cent}}$) and non-leakers ($f_{\mathrm{ esc}} < 5{{\ \rm per\ cent}}$) from a representative sample of >0.2L* Lyman α emitters (LAEs). We use median stacked spectra of these subsets over λrest ≈ 1000–8000 Å to investigate the conditions for LyC fesc. Our stacks show similar mass, metallicity, MUV, and βUV. We find the following differences between leakers versus non-leakers: (i) strong nebular C iv and He ii emission versus non-detections; (ii) [O iii]/[O ii] ≈ 8.5 versus ≈3; (iii) Hα/Hβ indicating no dust versus E(B − V) ≈ 0.3; (iv) Mg ii emission close to the systemic velocity versus redshifted, optically thick Mg ii; and (v) Lyα fesc of ${\approx} 50{{\ \rm per\ cent}}$ versus ${\approx} 10{{\ \rm per\ cent}}$. The extreme equivalent widths (EWs) in leakers ([O iii]+$\mathrm{ H}\beta \approx 1100$ Å rest frame) constrain the characteristic time-scale of LyC escape to ≈3–10 Myr bursts when short-lived stars with the hardest ionizing spectra shine. The defining traits of leakers – extremely ionizing stellar populations, low column densities, a dust-free, high-ionization state interstellar medium (ISM) – occur simultaneously in the $f_{\rm esc} > 20{{\ \rm per\ cent}}$ stack, suggesting they are causally connected, and motivating why indicators like [O iii]/[O ii] may suffice to constrain fesc at z > 6 with the James Webb Space Telescope (JWST). The leakers comprise half of our sample, have a median LyC$f_{\rm esc} \approx 50{{\ \rm per\ cent}}$ (conservative range: $20\!-\!55{{\ \rm per\ cent}}$), and an ionizing production efficiency $\log ({\xi _{\rm {ion}}/\rm {Hz\ erg^{-1}}})\approx 25.9$ (conservative range: 25.7–25.9). These results show LAEs – the type of galaxies rare at z ≈ 2, but that become the norm at higher redshift – are highly efficient ionizers, with extreme ξion and prolific fesc occurring in sync.

     
    more » « less