skip to main content

Title: Understanding “Alexandrian” extinctions using genomic DNA from fluid-preserved museum specimens of Desmognathus salamanders
Species that went extinct prior to the genomic era are typically out-of-reach for modern phylogenetic studies. We refer to these as “Alexandrian” extinctions, after the lost library of the ancient world. This is particularly limiting for conservation studies, as genetic data for such taxa may be key to understand extinction threats and risks, the causes of declines, and inform management of related, extant populations. Fortunately, continual advances in biochemistry and DNA sequencing offer increasing ability to recover DNA from historical museum specimens, including fluid-preserved natural history collections. Here, we report on success in recovering nuclear and mitochondrial data from the apparently-extinct subspecies Desmognathus fuscus carri Neill, 1951, a plethodontid salamander from spring runs in central Florida. The two specimens are 50 years old and were likely preserved in unbuffered formalin, but application of a recently derived extraction procedure yielded usable DNA and partially successful Anchored Hybrid Enrichment sequencing. These data suggest that the populations of D. f. carri from peninsular Florida are conspecific with the D. auriculatus A lineage as suggested by previous authors, but likely represented an ecogeographically distinct genetic segment that has now been lost. Genetic data from this Alexandrian extinction thus confirm the geographic extent of population more » declines and extirpations as well as their ecological context, suggesting a possibly disproportionate loss from sandy-bottom clearwater streams compared to blackwater swamps. Success of these methods bodes well for large-scale application to fluid-preserved natural history specimens from relevant historical populations, but the possibility of significant DNA damage and related sequencing errors in additional hurdle to overcome. « less
Award ID(s):
Publication Date:
Journal Name:
Conservation genetics
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the past decade, museum genomics studies have focused on obtaining DNA of sufficient quality and quantity for sequencing from fluid-preserved natural history specimens, primarily to be used in systematic studies. While these studies have opened windows to evolutionary and biodiversity knowledge of many species worldwide, published works often focus on the success of these DNA sequencing efforts, which is undoubtedly less common than obtaining minimal or sometimes no DNA or unusable sequence data from specimens in natural history collections. Here, we attempt to obtain and sequence DNA extracts from 115 fresh and 41 degraded samples of homalopsid snakes, as well as from two degraded samples of a poorly known snake, Hydrablabes periops . Hydrablabes has been suggested to belong to at least two different families (Natricidae and Homalopsidae) and with no fresh tissues known to be available, intractable museum specimens currently provide the only opportunity to determine this snake’s taxonomic affinity. Although our aim was to generate a target-capture dataset for these samples, to be included in a broader phylogenetic study, results were less than ideal due to large amounts of missing data, especially using the same downstream methods as with standard, high-quality samples. However, rather than discount resultsmore »entirely, we used mapping methods with references and pseudoreferences, along with phylogenetic analyses, to maximize any usable molecular data from our sequencing efforts, identify the taxonomic affinity of H. periops , and compare sequencing success between fresh and degraded tissue samples. This resulted in largely complete mitochondrial genomes for five specimens and hundreds to thousands of nuclear loci (ultra-conserved loci, anchored-hybrid enrichment loci, and a variety of loci frequently used in squamate phylogenetic studies) from fluid-preserved snakes, including a specimen of H. periops from the Field Museum of Natural History collection. We combined our H. periops data with previously published genomic and Sanger-sequenced datasets to confirm the familial designation of this taxon, reject previous taxonomic hypotheses, and make biogeographic inferences for Hydrablabes . A second H. periops specimen, despite being seemingly similar for initial raw sequencing results and after being put through the same protocols, resulted in little usable molecular data. We discuss the successes and failures of using different pipelines and methods to maximize the products from these data and provide expectations for others who are looking to use DNA sequencing efforts on specimens that likely have degraded DNA. Life Science Identifier ( Hydrablabes periops ) :pub:F2AA44 E2-D2EF-4747-972A-652C34C2C09D.« less
  2. Natalie Cooper (Ed.)
    1. Historical datasets can establish a critical baseline of plant–animal interactions for understanding contemporary interactions in the context of global change. Pollen is often incidentally preserved on animals in natural history collections. Techniques for removing pollen from insects have largely been developed for fresh insect specimens or historical specimens with large amounts of pollen on specialized structures. However, many key pollinating insects do not have these specialized structures and thus, there is a need for a method to extract pollen from these small and fragile insects. 2. Here, we propose a precision glycerine jelly swab tool to allow for the precise removal of pollen from old, small and fragile insect specimens. We use this tool to remove pollen from five families of insects collected in the late 1970s. Additionally, we compare our method with four previously published techniques for removing pollen from pinned contemporary specimens. 3. We show the functionality of the precision glycerine jelly swab for removing small quantities of pollen across insect families. We found that across the five methods, all removed pollen; yet, it was clear that some are better suited for fragile specimens. In particular, the traditional glycerine jelly swab and the precision glycerine jelly swabsmore »both performed well for removing pollen from bee faces. The shaking wash resulted in specimen fracture and residue left behind, the ethanol rinses left setae matted, and the glycerol swabbing left residue on the specimen. Additionally, we present photographs documenting the effects of these methods on pinned honey bee specimens. 4. The precision glycerine jelly swab opens up opportunities to sample pollen from a variety of insects in natural history collections. These pollen samples can be incorporated into downstream analyses for pollen identification either via mi-croscopy or DNA sequencing, and the resulting plant–insect interaction data can establish historical baselines for contemporary comparison. Beyond our ap-plication of this method to pollen on insects, this precision glycerine jelly swab tool could be used to explore pollen placement specialization or to sample bryo-phyte, fungal and tree fern spores dispersing on animals.« less
  3. Historical processes display some degree of “contingency,” meaning their outcomes are sensitive to seemingly inconsequential events that can fundamentally change the future. Contingency is what makes historical outcomes unpredictable. Unlike many other natural phenomena, evolution is a historical process. Evolutionary change is often driven by the deterministic force of natural selection, but natural selection works upon variation that arises unpredictably through time by random mutation, and even beneficial mutations can be lost by chance through genetic drift. Moreover, evolution has taken place within a planetary environment with a particular history of its own. This tension between determinism and contingency makes evolutionary biology a kind of hybrid between science and history. While philosophers of science examine the nuances of contingency, biologists have performed many empirical studies of evolutionary repeatability and contingency. Here, we review the experimental and comparative evidence from these studies. Replicate populations in evolutionary “replay” experiments often show parallel changes, especially in overall performance, although idiosyncratic outcomes show that the particulars of a lineage’s history can affect which of several evolutionary paths is taken. Comparative biologists have found many notable examples of convergent adaptation to similar conditions, but quantification of how frequently such convergence occurs is difficult. On balance,more »the evidence indicates that evolution tends to be surprisingly repeatable among closely related lineages, but disparate outcomes become more likely as the footprint of history grows deeper. Ongoing research on the structure of adaptive landscapes is providing additional insight into the interplay of fate and chance in the evolutionary process.

    « less
  4. null (Ed.)
    Abstract Background and Aims Cunoniaceae are woody plants with a distribution that suggests a complex history of Gondwanan vicariance, long-distance dispersal, diversification and extinction. Only four out of ~27 genera in Cunoniaceae are native to South America today, but the discovery of extinct species from Argentine Patagonia is providing new information about the history of this family in South America. Methods We describe fossil flowers collected from early Danian (early Palaeocene, ~64 Mya) deposits of the Salamanca Formation. We compare them with similar flowers from extant and extinct species using published literature and herbarium specimens. We used simultaneous analysis of morphology and available chloroplast DNA sequences (trnL–F, rbcL, matK, trnH–psbA) to determine the probable relationship of these fossils to living Cunoniaceae and the co-occurring fossil species Lacinipetalum spectabilum. Key Results Cunoniantha bicarpellata gen. et sp. nov. is the second species of Cunoniaceae to be recognized among the flowers preserved in the Salamanca Formation. Cunoniantha flowers are pentamerous and complete, the anthers contain in situ pollen, and the gynoecium is bicarpellate and syncarpous with two free styles. Phylogenetic analysis indicates that Cunoniantha belongs to crown-group Cunoniaceae among the core Cunoniaceae clade, although it does not have obvious affinity with any tribe.more »Lacinipetalum spectabilum, also from the Salamanca Formation, belongs to the Cunoniaceae crown group as well, but close to tribe Schizomerieae. Conclusions Our findings highlight the importance of West Gondwana in the evolution of Cunoniaceae during the early Palaeogene. The co-occurrence of C. bicarpellata and L. spectabilum, belonging to different clades within Cunoniaceae, indicates that the diversification of crown-group Cunoniaceae was under way by 64 Mya.« less
  5. Abstract Ancient DNA is transforming our ability to reconstruct historical patterns and mechanisms shaping modern diversity and distributions. In particular, molecular data from extinct Holocene island faunas have revealed surprising biogeographic scenarios. Here, we recovered partial mitochondrial (mt) genomes for 1300–1400 year old specimens ( n  = 2) of the extinct “horned” crocodile, Voay robustus , collected from Holocene deposits in southwestern Madagascar. Phylogenetic analyses of partial mt genomes and tip-dated timetrees based on molecular, fossil, and stratigraphic data favor a sister group relationship between Voay and Crocodylus (true crocodiles). These well supported trees conflict with recent morphological systematic work that has consistently placed Voay within Osteolaeminae (dwarf crocodiles and kin) and provide evidence for likely homoplasy in crocodylian cranial anatomy and snout shape. The close relationship between Voay and Crocodylus lends additional context for understanding the biogeographic origins of these genera and refines competing hypotheses for the recent extinction of Voay from Madagascar.