Abstract The one‐step syntheses, X‐ray structures, and spectroscopic characterization of synthetic iron clusters, bearing either inorganic sulfides or thiolate with interstitial carbide motifs, are reported. Treatment of iron carbide carbonyl clusters [Fen(μn‐C)(CO)m]x(n=5,6;m=15,16;x=0,−2) with electrophilic sulfur sources (S2Cl2, S8) results in the formation of several μ4‐S dimers of clusters, and moreover, iron‐sulfide‐(sulfocarbide) clusters. The core sulfocarbide unit {C−S}4−serves as a structural model for a proposed intermediate in the radicalS‐adenosyl‐L‐methionine biogenesis of the M‐cluster. Furthermore, the electrophilic sulfur strategy has been extended to provide the first ever thiolato‐iron‐carbide complex: an analogous reaction with toluylsulfenyl chloride affords the cluster [Fe5(μ5‐C)(SC7H7)(CO)13]−. The strategy described herein provides a breakthrough towards developing syntheses of biomimetic iron‐sulfur‐carbide clusters like FeMoco.
more »
« less
Construction of Synthetic Models for Nitrogenase-Relevant NifB Biogenesis Intermediates and Iron-Carbide-Sulfide Clusters
The family of nitrogenase enzymes catalyzes the reduction of atmospheric dinitrogen (N2) to ammonia under remarkably benign conditions of temperature, pressure, and pH. Therefore, the development of synthetic complexes or materials that can similarly perform this reaction is of critical interest. The primary obstacle for obtaining realistic synthetic models of the active site iron-sulfur-carbide cluster (e.g., FeMoco) is the incorporation of a truly inorganic carbide. This review summarizes the present state of knowledge regarding biological and chemical (synthetic) incorporation of carbide into iron-sulfur clusters. This includes the Nif cluster of proteins and associated biochemistry involved in the endogenous biogenesis of FeMoco. We focus on the chemical (synthetic) incorporation portion of our own efforts to incorporate and modify C1 units in iron/sulfur clusters. We also highlight recent contributions from other research groups in the area toward C1 and/or inorganic carbide insertion.
more »
« less
- Award ID(s):
- 1808311
- PAR ID:
- 10293946
- Date Published:
- Journal Name:
- Catalysts
- Volume:
- 10
- Issue:
- 11
- ISSN:
- 2073-4344
- Page Range / eLocation ID:
- 1317
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Modern day aerobic respiration in mitochondria involving complex I converts redox energy into chemical energy and likely evolved from a simple anaerobic system now represented by hydrogen gas-evolving hydrogenase (MBH) where protons are the terminal electron acceptor. Here we present the cryo-EM structure of an early ancestor in the evolution of complex I, the elemental sulfur (S 0 )-reducing reductase MBS. Three highly conserved protein loops linking cytoplasmic and membrane domains enable scalable energy conversion in all three complexes. MBS contains two proton pumps compared to one in MBH and likely conserves twice the energy. The structure also reveals evolutionary adaptations of MBH that enabled S 0 reduction by MBS catalyzed by a site-differentiated iron-sulfur cluster without participation of protons or amino acid residues. This is the simplest mechanism proposed for reduction of inorganic or organic disulfides. It is of fundamental significance in the iron and sulfur-rich volcanic environments of early earth and possibly the origin of life. MBS provides a new perspective on the evolution of modern-day respiratory complexes and of catalysis by biological iron-sulfur clusters.more » « less
-
The interest in methyl group C–H bond activation near or bound to iron-containing clusters is of key biological importance, due to the broad relevance of radical SAM reactions. Specifically, such processes are implicated in the biogenesis of the interstitial carbide found in the nitrogenase FeMoco active site. In this work, we find that the diamagnetic, methyl-thiolate capped iron–carbonyl cluster anion [(CH 3 S)Fe 3 (CO) 9 ] − (1) undergoes facile C–H hydrogen atom abstraction upon treatment with TEMPO. The process leads to (i) eradication of the CH 3 moiety, (ii) formation of a sulfide bridge, and (iii) cluster dimerization—thereby generating the ‘dimer of trimers’ cluster [K(benzo-15-crown-5) 2 ] 2 [(SFe 2 (CO) 12 ) 2 Fe(CO) 2 ] (2). In contrast, the corresponding isopropyl variant [Fe 3 (S i Pr)(CO) 9 ] − (3) does not react with TEMPO . Mass spectrometry confirmed the presence of TEMPOH, as well as CO oxidation vis a vis CO 2 and 2,2,6,6-tetramethylpiperidine. GC-MS measurements of the headspace reveal that the ultimate fate of the methyl carbon is likely incorporation into multiple products—one of which may be a volatile low mass hydrocarbon—rather than carbon/carbide incorporation.more » « less
-
null (Ed.)The incorporation of substitutional Co2+ impurities in [Cd10S4(SPh)16]4– (Cd10) molecular clusters prepared by the self-assembly method where Na2S is the sulfur precursor and a redox method where elemental S is the sulfur precursor is studied. The Co2+ ions provide unique spectroscopic and chemical handles to monitor dopant speciation during cluster formation and determine what role, if any, other cluster species play during Cd10 cluster formation. In contrast to the redox method that produces exclusively surface-exchanged Co2+-doped Cd10 (Co:Cd10), the preparation of Cd10 by the self-assembly method in the presence of Co2+ ions results in Co2+ incorporation at both the surface and core sites of the Cd10 cluster. Electrospray ionization mass spectrometry (ESI–MS) analysis of the dopant distribution for the self-assembly synthesis of Co:Cd10 is consistent with a near-Poissonian distribution for all nominal dopant concentrations albeit with reduced actual Co2+ incorporation. At a nominal Co2+ concentration of 50%, we observe incorporation of up to seven Co2+ ions within the Cd10 self-assembled cluster compared to a maximum of only four Co2+ dopants in the Cd10 redox clusters. The observation of up to seven Co2+ dopants must involve substitution of at least three core sites within the Cd10 cluster. Electronic absorption spectra of the Co2+ ligand field transition in the heavily doped Co:Cd10 clusters display clear deviation with the surface-doped Co2+-doped Cd10 clusters prepared by the redox method. We hypothesize that the coordination of Co2+ and S2– ions in solution prior to cluster formation, which is possible only with the self-assembly method, is critical to the doping of Co2+ ions within the Cd10 cores.more » « less
-
Mitochondrial inner NEET (MiNT) and the outer mitochondrial membrane (OMM) mitoNEET (mNT) proteins belong to the NEET protein family. This family plays a key role in mitochondrial labile iron and reactive oxygen species (ROS) homeostasis. NEET proteins contain labile [2Fe-2S] clusters which can be transferred to apo-acceptor proteins. In eukaryotes, the biogenesis of [2Fe-2S] clusters occurs within the mitochondria by the iron–sulfur cluster (ISC) system; the clusters are then transferred to [2Fe-2S] proteins within the mitochondria or exported to cytosolic proteins and the cytosolic iron–sulfur cluster assembly (CIA) system. The last step of export of the [2Fe-2S] is not yet fully characterized. Here we show that MiNT interacts with voltage-dependent anion channel 1 (VDAC1), a major OMM protein that connects the intermembrane space with the cytosol and participates in regulating the levels of different ions including mitochondrial labile iron (mLI). We further show that VDAC1 is mediating the interaction between MiNT and mNT, in which MiNT transfers its [2Fe-2S] clusters from inside the mitochondria to mNT that is facing the cytosol. This MiNT–VDAC1–mNT interaction is shown both experimentally and by computational calculations. Additionally, we show that modifying MiNT expression in breast cancer cells affects the dynamics of mitochondrial structure and morphology, mitochondrial function, and breast cancer tumor growth. Our findings reveal a pathway for the transfer of [2Fe-2S] clusters, which are assembled inside the mitochondria, to the cytosol.more » « less