skip to main content


Title: Construction of Synthetic Models for Nitrogenase-Relevant NifB Biogenesis Intermediates and Iron-Carbide-Sulfide Clusters
The family of nitrogenase enzymes catalyzes the reduction of atmospheric dinitrogen (N2) to ammonia under remarkably benign conditions of temperature, pressure, and pH. Therefore, the development of synthetic complexes or materials that can similarly perform this reaction is of critical interest. The primary obstacle for obtaining realistic synthetic models of the active site iron-sulfur-carbide cluster (e.g., FeMoco) is the incorporation of a truly inorganic carbide. This review summarizes the present state of knowledge regarding biological and chemical (synthetic) incorporation of carbide into iron-sulfur clusters. This includes the Nif cluster of proteins and associated biochemistry involved in the endogenous biogenesis of FeMoco. We focus on the chemical (synthetic) incorporation portion of our own efforts to incorporate and modify C1 units in iron/sulfur clusters. We also highlight recent contributions from other research groups in the area toward C1 and/or inorganic carbide insertion.  more » « less
Award ID(s):
1808311
NSF-PAR ID:
10293946
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Catalysts
Volume:
10
Issue:
11
ISSN:
2073-4344
Page Range / eLocation ID:
1317
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The one‐step syntheses, X‐ray structures, and spectroscopic characterization of synthetic iron clusters, bearing either inorganic sulfides or thiolate with interstitial carbide motifs, are reported. Treatment of iron carbide carbonyl clusters [Fenn‐C)(CO)m]x(n=5,6;m=15,16;x=0,−2) with electrophilic sulfur sources (S2Cl2, S8) results in the formation of several μ4‐S dimers of clusters, and moreover, iron‐sulfide‐(sulfocarbide) clusters. The core sulfocarbide unit {C−S}4−serves as a structural model for a proposed intermediate in the radicalS‐adenosyl‐L‐methionine biogenesis of the M‐cluster. Furthermore, the electrophilic sulfur strategy has been extended to provide the first ever thiolato‐iron‐carbide complex: an analogous reaction with toluylsulfenyl chloride affords the cluster [Fe55‐C)(SC7H7)(CO)13]. The strategy described herein provides a breakthrough towards developing syntheses of biomimetic iron‐sulfur‐carbide clusters like FeMoco.

     
    more » « less
  2. Abstract

    The one‐step syntheses, X‐ray structures, and spectroscopic characterization of synthetic iron clusters, bearing either inorganic sulfides or thiolate with interstitial carbide motifs, are reported. Treatment of iron carbide carbonyl clusters [Fenn‐C)(CO)m]x(n=5,6;m=15,16;x=0,−2) with electrophilic sulfur sources (S2Cl2, S8) results in the formation of several μ4‐S dimers of clusters, and moreover, iron‐sulfide‐(sulfocarbide) clusters. The core sulfocarbide unit {C−S}4−serves as a structural model for a proposed intermediate in the radicalS‐adenosyl‐L‐methionine biogenesis of the M‐cluster. Furthermore, the electrophilic sulfur strategy has been extended to provide the first ever thiolato‐iron‐carbide complex: an analogous reaction with toluylsulfenyl chloride affords the cluster [Fe55‐C)(SC7H7)(CO)13]. The strategy described herein provides a breakthrough towards developing syntheses of biomimetic iron‐sulfur‐carbide clusters like FeMoco.

     
    more » « less
  3. Peptides coordinated to iron–sulfur clusters, referred to as maquettes, represent a synthetic strategy for constructing biomimetic models of iron–sulfur metalloproteins. These maquettes have been successfully employed as building blocks of engineered heme‐containing proteins with electron‐transfer functionality; however, they have yet to be explored in reactivity studies. The concept of iron–sulfur nesting in peptides is a leading hypothesis in Origins‐of‐Life research as a plausible path to bridge the discontinuity between prebiotic chemical transformations and extant enzyme catalysis. Based on past biomimetic and biochemical research, we put forward a mechanism of maquette reconstitution that guides our development of computational tools and methodologies. In this study, we examined a key feature of the first stage of maquette formation, which is the secondary structure of aqueous peptide models using molecular dynamics simulations based on the AMBER99SB empirical force field. We compared and contrasted S…S distances, [2Fe‐2S] and [4Fe‐4S] nests, and peptide conformations via Ramachandran plots for dissolved Cys and Gly amino acids, the CGGCGGC 7‐mer, and the GGCGGGCGGCGGW 16‐mer peptide. Analytical tools were developed for following the evolution of secondary structural features related to [Fe‐S] cluster nesting along 100 ns trajectories. Simulations demonstrated the omnipresence of peptide nests for preformed [2Fe‐2S] clusters; however, [4Fe‐4S] cluster nests were observed only for the 16‐mer peptide with lifetimes of a few nanoseconds. The origin of the [4Fe‐4S] nest and its stability was linked to a “kinked‐ribbon” peptide conformation. Our computational approach lays the foundation for transitioning into subsequent stages of maquette reconstitution, those being the formation of iron ion/iron–sulfur coordinated peptides. © 2018 Wiley Periodicals, Inc.

     
    more » « less
  4. Abstract Modern day aerobic respiration in mitochondria involving complex I converts redox energy into chemical energy and likely evolved from a simple anaerobic system now represented by hydrogen gas-evolving hydrogenase (MBH) where protons are the terminal electron acceptor. Here we present the cryo-EM structure of an early ancestor in the evolution of complex I, the elemental sulfur (S 0 )-reducing reductase MBS. Three highly conserved protein loops linking cytoplasmic and membrane domains enable scalable energy conversion in all three complexes. MBS contains two proton pumps compared to one in MBH and likely conserves twice the energy. The structure also reveals evolutionary adaptations of MBH that enabled S 0 reduction by MBS catalyzed by a site-differentiated iron-sulfur cluster without participation of protons or amino acid residues. This is the simplest mechanism proposed for reduction of inorganic or organic disulfides. It is of fundamental significance in the iron and sulfur-rich volcanic environments of early earth and possibly the origin of life. MBS provides a new perspective on the evolution of modern-day respiratory complexes and of catalysis by biological iron-sulfur clusters. 
    more » « less
  5. The interest in methyl group C–H bond activation near or bound to iron-containing clusters is of key biological importance, due to the broad relevance of radical SAM reactions. Specifically, such processes are implicated in the biogenesis of the interstitial carbide found in the nitrogenase FeMoco active site. In this work, we find that the diamagnetic, methyl-thiolate capped iron–carbonyl cluster anion [(CH 3 S)Fe 3 (CO) 9 ] − (1) undergoes facile C–H hydrogen atom abstraction upon treatment with TEMPO. The process leads to (i) eradication of the CH 3 moiety, (ii) formation of a sulfide bridge, and (iii) cluster dimerization—thereby generating the ‘dimer of trimers’ cluster [K(benzo-15-crown-5) 2 ] 2 [(SFe 2 (CO) 12 ) 2 Fe(CO) 2 ] (2). In contrast, the corresponding isopropyl variant [Fe 3 (S i Pr)(CO) 9 ] − (3) does not react with TEMPO . Mass spectrometry confirmed the presence of TEMPOH, as well as CO oxidation vis a vis CO 2 and 2,2,6,6-tetramethylpiperidine. GC-MS measurements of the headspace reveal that the ultimate fate of the methyl carbon is likely incorporation into multiple products—one of which may be a volatile low mass hydrocarbon—rather than carbon/carbide incorporation. 
    more » « less