Hydrosocial spatio-temporalities—aspects of water belonging to space, time, or space-time—are central to water governance, providing a framework upon which overall hydrosocial relations are constructed, and are fundamental to the establishment of values and central to socio-cultural-political relationships. Moreover, spatio-temporal conceptions may differ among diverse governing entities and across scales, creating “variability” through ontological pluralism, as well as power asymmetries embedded in cultural bias. This paper explores spatio-temporal conceptions related to water quality governance, an aspect of water governance often biased toward technical and scientific space-time conceptions. We offer examples of different aspects of spatio-temporality in water quality issues among Tribes in the United States, highlighting several themes, including spatiotemporal cycles, technological mediation, and interrelationship and fluidity. Finally, we suggest that because water is part of a dynamic network of space-times, water quality may be best governed through more holistic practices that recognize tribal sovereignty and hydrosocial variability.
Cultural imaginaries or incommensurable ontologies? Relationality and sovereignty as worldviews in socio-technological system transitions
Scholars bridging the fields of science and technology studies (STS) and energy research in social sciences (ERSS) offer a rich and integrated conceptualization of how energy systems are imbued in social systems, including cultures, social structures, institutions, and social relations of power. Yet as fields of study, STS and ERSS are dominated by approaches to understanding nature, culture, and relationships among them with origins in western European Enlightenment thinking. In this article, we argue that the language of “imaginaries” provides an understanding of culturally organized normative commitments but may obscure attention to what are actually diverse and sometimes incommensurable yet legitimate plural ontologies. Tribal Nations, Indigenous communities,
and other non-Western worldviews are not simply imagined; they offer different teachings regarding the relational and embedded realities governing relations among human and more-than-human beings across time
and space. The field of STS has a rich history of exploring ontological controversies and provides insight into understanding diverse and competing perspectives in science and technology, yet without articulating the connection between this conceptual terrain and the lived realities of socio-technological system entrenchment or change. ERSS recognizes participation, energy system democratization, and even co-production as components of
a just energy transition, while most typically thinking about participation as more »
- Award ID(s):
- 1934346
- Publication Date:
- NSF-PAR ID:
- 10294094
- Journal Name:
- Energy research social science
- Volume:
- 80
- Issue:
- 10
- Page Range or eLocation-ID:
- 102242
- ISSN:
- 2214-6296
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Scientific study of issues at the nexus of food–energy–water systems (FEWS) requires grappling with multifaceted, “wicked” problems. FEWS involve interactions occurring directly and indirectly across complex and overlapping spatial and temporal scales; they are also imbued with diverse and sometimes conflicting meanings for the human and more-than-human beings that live within them. In this paper, we consider the role of language in the dynamics of boundary work, recognizing that the language often used in stakeholder and community engagement intended to address FEWS science and decision-making constructs boundaries and limits diverse and inclusive participation. In contrast, some language systems provide opportunities to build bridges rather than boundaries in engagement. Based on our experiences with engagement in FEWS science and with Indigenous knowledges and languages, we consider examples of the role of language in reflecting worldviews, values, practices, and interactions in FEWS science and engagement. We particularly focus on Indigenous knowledges from Anishinaabe and the language of Anishinaabemowin, contrasting languages of boundaries and bridges through concrete examples. These examples are used to unpack the argument of this work, which is that scientific research aiming to engage FEWS issues in working landscapes requires grappling with embedded, practical understandings. This perspective demonstrates themore »
-
Three broad issues have been identified in the professional formation of engineers: 1) the gap between what students learn in universities and what they practice upon graduation; 2) the limiting perception that engineering is solely technical, math, and theory oriented; and 3) the lack of diversity (representation of a wide range of people) and lack of inclusion (incorporation of different perspectives, values, and ways of thinking and being in engineering) in many engineering programs. These are not new challenges in engineering education, rather they are persistent and difficult to change. There have been countless calls to recruit and retain women and underrepresented minority group members into engineering careers and numerous strategies proposed to improve diversity, inclusion, and retention, as well as to calls to examine socio-technical integration in engineering cultures and education for professional formation. Despite the changes in some disciplinary profiles in engineering and the curricular reforms within engineering education, there still has not been the deep transformation needed to integrate inclusionary processes and thinking into professional formation. In part, the reason is that diversity and inclusion are still framed as simply “numbers problems” to be solved. What is needed instead is an approach that understands and explores diversitymore »
-
Engineers are called to play an important role in addressing the complex problems of our global society, such as climate change and global health care. In order to adequately address these complex problems, engineers must be able to identify and incorporate into their decision making relevant aspects of systems in which their work is contextualized, a skill often referred to as systems thinking. However, within engineering, research on systems thinking tends to emphasize the ability to recognize potentially relevant constituent elements and parts of an engineering problem, rather than how these constituent elements and parts are embedded in broader economic, sociocultural, and temporal contexts and how all of these must inform decision making about problems and solutions. Additionally, some elements of systems thinking, such as an awareness of a particular sociocultural context or the coordination of work among members of a cross-disciplinary team, are not always recognized as core engineering skills, which alienates those whose strengths and passions are related to, for example, engineering systems that consider and impact social change. Studies show that women and minorities, groups underrepresented within engineering, are drawn to engineering in part for its potential to address important social issues. Emphasizing the importance of systemsmore »
-
Abstract
Between 2018 and 2021 PIs for National Science Foundation Awards # 1758781 and 1758814 EAGER: Collaborative Research: Developing and Testing an Incubator for Digital Entrepreneurship in Remote Communities, in partnership with the Tanana Chiefs Conference, the traditional tribal consortium of the 42 villages of Interior Alaska, jointly developed and conducted large-scale digital and in-person surveys of multiple Alaskan interior communities. The survey was distributed via a combination of in-person paper surveys, digital surveys, social media links, verbal in-person interviews and telephone-based responses. Analysis of this measure using SAS demonstrated the statistically significant need for enhanced digital infrastructure and reworked digital entrepreneurial and technological education in the Tanana Chiefs Conference region. 1. Two statistical measures were created during this research: Entrepreneurial Readiness (ER) and Digital Technology needs and skills (DT), both of which showed high measures of internal consistency (.89, .81). 2. The measures revealed entrepreneurial readiness challenges and evidence of specific addressable barriers that are currently preventing (serving as hindrances) to regional digital economic activity. The survey data showed statistically significant correlation with the mixed-methodological in-person focus groups and interview research conducted by the PIs and TCC collaborators in Hughes and Huslia, AK, which further corroborated stated barriers to