skip to main content


Title: Cultural imaginaries or incommensurable ontologies? Relationality and sovereignty as worldviews in socio-technological system transitions
Scholars bridging the fields of science and technology studies (STS) and energy research in social sciences (ERSS) offer a rich and integrated conceptualization of how energy systems are imbued in social systems, including cultures, social structures, institutions, and social relations of power. Yet as fields of study, STS and ERSS are dominated by approaches to understanding nature, culture, and relationships among them with origins in western European Enlightenment thinking. In this article, we argue that the language of “imaginaries” provides an understanding of culturally organized normative commitments but may obscure attention to what are actually diverse and sometimes incommensurable yet legitimate plural ontologies. Tribal Nations, Indigenous communities, and other non-Western worldviews are not simply imagined; they offer different teachings regarding the relational and embedded realities governing relations among human and more-than-human beings across time and space. The field of STS has a rich history of exploring ontological controversies and provides insight into understanding diverse and competing perspectives in science and technology, yet without articulating the connection between this conceptual terrain and the lived realities of socio-technological system entrenchment or change. ERSS recognizes participation, energy system democratization, and even co-production as components of a just energy transition, while most typically thinking about participation as a methodology or research approach rather than as requiring consideration and even wholesale reconceptualization of ontological foundations. To advance convergent, transdisciplinary social science research in socio technological transitions requires grappling with plural ontologies regarding the reality of relations in the world. Here, we explore diverse ontologies shaping the realities of energy systems through the lens of Tribal Nations in the Great Lakes region in the United States. Ontologies that recognize reciprocal relationships among human and more-than-human beings as well as the sovereignty of these beings and their collective kinships suggest fundamentally different priorities for energy systems transitions. Moving beyond the language of imagination to recognize that cultures can involve diverse and sometimes incommensurable pluralistic ontologies is essential for developing inclusive and just frameworks for socio-technological system transitions.  more » « less
Award ID(s):
1934346
NSF-PAR ID:
10294094
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Energy research social science
Volume:
80
Issue:
10
ISSN:
2214-6296
Page Range / eLocation ID:
102242
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydrosocial spatio-temporalities—aspects of water belonging to space, time, or space-time—are central to water governance, providing a framework upon which overall hydrosocial relations are constructed, and are fundamental to the establishment of values and central to socio-cultural-political relationships. Moreover, spatio-temporal conceptions may differ among diverse governing entities and across scales, creating “variability” through ontological pluralism, as well as power asymmetries embedded in cultural bias. This paper explores spatio-temporal conceptions related to water quality governance, an aspect of water governance often biased toward technical and scientific space-time conceptions. We offer examples of different aspects of spatio-temporality in water quality issues among Tribes in the United States, highlighting several themes, including spatiotemporal cycles, technological mediation, and interrelationship and fluidity. Finally, we suggest that because water is part of a dynamic network of space-times, water quality may be best governed through more holistic practices that recognize tribal sovereignty and hydrosocial variability. 
    more » « less
  2. Abstract

    In this paper, we reflect on our collective experiences engaging with Anishinaabe Tribal Nations in the Great Lakes region to support Tribal sovereignty in decision‐making for food, energy, and water (FEW) systems. In these diverse experiences, we find common lessons. The first set of lessons contributes new empirical knowledge regarding the challenges and opportunities that rural Great Lakes Tribal Nations navigate for enacting sovereignty in decision‐making. Our experiences illustrate that while Tribal Nations benefit from a broad and deep commitment to sovereignty and many cultural strengths, they are often challenged by shortages in administrative capacity; technical support; and embeddedness in economic, socio‐cultural, and institutional dynamics that must be further negotiated for Tribes to enact the sovereignty to which they are inherently (and legally) entitled. Productive partnerships struggle when university partners fail to acknowledge these realities. The second set of lessons addresses the potential for, and challenges of, effective engagement processes. We find that engagement with university professionals is often mismatched with the priorities and needs of Tribal Nations. Effective engagement with Tribal Nations requires practical knowledge, applied assistance, and grounded, genuine relationships; these requirements often run counter to the institutional structures and priorities imposed by universities, federal funding agencies, and student recruitment. These findings, associated with both empirical knowledge and lessons on process, highlight shared insights on formidable barriers to effective engagement. Based on our firsthand experience working with rural Tribal Nations on FEW decision‐making, we share these reflections with particular focus on lessons learned for professionals who engage, or hope to engage, with Tribal Nations in rural settings and offer opportunities to transform engagement processes to better support the immediate, practical needs of rural Tribal Nations.

     
    more » « less
  3. Most engineering ethics education is segregated into particular courses that, from a student’s perspective, can feel disconnected from the technical education at the center of their programs. In part because of this disconnect, several immersive programs designed to train engineering students in socio-technical systems thinking have emerged in the U.S. in the past two decades. One pedagogical goal of these programs is to provide alternative ideologies and practices that counter dominant cultural paradigms that marginalize macroethical thinking and social justice perspectives in engineering schools. In theory, longer-term immersion in such programs can help students overcome these harmful ideologies. However, because of the difficult nature of studying cultural change, very few studies have attempted to provide a thick description of how these alternative cultural practices are influencing student perspectives on engineering practices. Our study offers a rare glimpse at student uptake of these practices in a multi-year Science, Technology, and Society (STS) living-learning program. Our study explores whether and how cultural practices within an STS program help students develop and sustain the resources for using a socio-technical systems thinking approach to engineering practice. We grounded our work in a cultural practices framework from Nasir and Kirshner [1] which roughly understands practice to be “a patterned set of actions performed by members of a group based on common purposes and expectations, with shared cultural values, tools, and meanings” ([2, p. 99] as cited in [3]). Our descriptions of collective enactments of cultural practices are grounded in accounts of classroom events from researcher fieldnotes and reflections in student interviews. Looking across the enactment of practices in classrooms and students’ interpretations of these events in interviews allows us to describe the multiplicity of meanings that students distill from these activities. This paper will present on multiple cultural practices salient to students we have identified in this STS community, for example: cultivating an ethics of care, making the invisible visible, understanding systems from multiple perspectives, and empowering students to develop moral stances as citizens and scientists/engineers in society. Because of the complexity of the interplay between the scaffolding of the STS program’s pedagogy and the emergence of these four themes, we chose to center “cultivating an ethics of care” in this analysis and relationally explore the other three themes through it. Ethics of care manifests in two basic ways in the data. Students talk about how an ethics of care is part of the STS program community and how the STS program fosters the need for an ethics of care toward communities outside the classroom through human-centered engineering design. 
    more » « less
  4. Abstract Scientific study of issues at the nexus of food–energy–water systems (FEWS) requires grappling with multifaceted, “wicked” problems. FEWS involve interactions occurring directly and indirectly across complex and overlapping spatial and temporal scales; they are also imbued with diverse and sometimes conflicting meanings for the human and more-than-human beings that live within them. In this paper, we consider the role of language in the dynamics of boundary work, recognizing that the language often used in stakeholder and community engagement intended to address FEWS science and decision-making constructs boundaries and limits diverse and inclusive participation. In contrast, some language systems provide opportunities to build bridges rather than boundaries in engagement. Based on our experiences with engagement in FEWS science and with Indigenous knowledges and languages, we consider examples of the role of language in reflecting worldviews, values, practices, and interactions in FEWS science and engagement. We particularly focus on Indigenous knowledges from Anishinaabe and the language of Anishinaabemowin, contrasting languages of boundaries and bridges through concrete examples. These examples are used to unpack the argument of this work, which is that scientific research aiming to engage FEWS issues in working landscapes requires grappling with embedded, practical understandings. This perspective demonstrates the importance of grappling with the role of language in creating boundaries or bridges, while recognizing that training in engagement may not critically reflect on the role of language in limiting diversity and inclusivity in engagement efforts. Leaving this reflexive consideration of language unexamined may unknowingly perpetuate boundaries rather than building bridges, thus limiting the effectiveness of engagement that is intended to address wicked problems in working landscapes. 
    more » « less
  5. Three broad issues have been identified in the professional formation of engineers: 1) the gap between what students learn in universities and what they practice upon graduation; 2) the limiting perception that engineering is solely technical, math, and theory oriented; and 3) the lack of diversity (representation of a wide range of people) and lack of inclusion (incorporation of different perspectives, values, and ways of thinking and being in engineering) in many engineering programs. These are not new challenges in engineering education, rather they are persistent and difficult to change. There have been countless calls to recruit and retain women and underrepresented minority group members into engineering careers and numerous strategies proposed to improve diversity, inclusion, and retention, as well as to calls to examine socio-technical integration in engineering cultures and education for professional formation. Despite the changes in some disciplinary profiles in engineering and the curricular reforms within engineering education, there still has not been the deep transformation needed to integrate inclusionary processes and thinking into professional formation. In part, the reason is that diversity and inclusion are still framed as simply “numbers problems” to be solved. What is needed instead is an approach that understands and explores diversity and inclusion as interrelated with the epistemological (what do engineers need to know) and ontological (what does it mean to be an engineer) underpinnings of engineering. These issues are highly complex, interconnected, and not amenable to simple solutions, that is, they are “wicked” problems. They require design thinking. Thus our NSF-funded Research in the Formation of Engineers (RFE) study utilizes a design thinking approach and research activities to explore foundational understandings of formation and diversity and inclusion in engineering while addressing the three project objectives: 1) Better prepare engineers for today’s workforce; 2) Broaden understandings of engineering practice as both social and technical; and 3) Create and sustain more diverse and inclusionary engineering programs. The project is organized around the three phases of the design process (inspiration, ideation, and implementation), and embedded within the design process is a longitudinal, multiphase, mixed-methods study. Although the goal is to eventually study these objectives on a broader scale, we begin with a smaller context: the School of Electrical and Computer Engineering (ECE) and the Weldon School of Biomedical Engineering (BME) at Purdue University. These schools share similarities with some common coursework and faculty, but also provide contrasts as BME’s undergraduate population, on average for recent semesters, has been 44-46% female, where ECE has been 13-14% female. Although BME has slightly more underrepresented minority students (7-8% versus 5%), approximately 60% of BME students are white, versus 40% for ECE. It is important to note that Purdue’s School of ECE offers B.S. degrees in Electrical Engineering (EE) and Computer Engineering (CmpE), which reflect unique disciplinary cultures. Additionally, the schools differ significantly on undergraduate enrollment. The BME enrollment was 278, whereas ECE’s enrollment was 675 in EE and 541 in CmpE1. In this paper we describe the background literature and the research design, including the study contexts, target subject populations, and procedures for quantitative and qualitative data collection and analysis. In addition, we present the data collected during the first phase of the research project. In our poster, we will present preliminary analysis of the first phase data. 
    more » « less