skip to main content

Search for: All records

Award ID contains: 1934346

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2023
  2. Abstract Scientific study of issues at the nexus of food–energy–water systems (FEWS) requires grappling with multifaceted, “wicked” problems. FEWS involve interactions occurring directly and indirectly across complex and overlapping spatial and temporal scales; they are also imbued with diverse and sometimes conflicting meanings for the human and more-than-human beings that live within them. In this paper, we consider the role of language in the dynamics of boundary work, recognizing that the language often used in stakeholder and community engagement intended to address FEWS science and decision-making constructs boundaries and limits diverse and inclusive participation. In contrast, some language systems provide opportunities to build bridges rather than boundaries in engagement. Based on our experiences with engagement in FEWS science and with Indigenous knowledges and languages, we consider examples of the role of language in reflecting worldviews, values, practices, and interactions in FEWS science and engagement. We particularly focus on Indigenous knowledges from Anishinaabe and the language of Anishinaabemowin, contrasting languages of boundaries and bridges through concrete examples. These examples are used to unpack the argument of this work, which is that scientific research aiming to engage FEWS issues in working landscapes requires grappling with embedded, practical understandings. This perspective demonstrates themore »importance of grappling with the role of language in creating boundaries or bridges, while recognizing that training in engagement may not critically reflect on the role of language in limiting diversity and inclusivity in engagement efforts. Leaving this reflexive consideration of language unexamined may unknowingly perpetuate boundaries rather than building bridges, thus limiting the effectiveness of engagement that is intended to address wicked problems in working landscapes.« less
    Free, publicly-accessible full text available June 1, 2023
  3. Free, publicly-accessible full text available June 1, 2023
  4. Free, publicly-accessible full text available June 1, 2023
  5. Free, publicly-accessible full text available May 1, 2023
  6. Scholars bridging the fields of science and technology studies (STS) and energy research in social sciences (ERSS) offer a rich and integrated conceptualization of how energy systems are imbued in social systems, including cultures, social structures, institutions, and social relations of power. Yet as fields of study, STS and ERSS are dominated by approaches to understanding nature, culture, and relationships among them with origins in western European Enlightenment thinking. In this article, we argue that the language of “imaginaries” provides an understanding of culturally organized normative commitments but may obscure attention to what are actually diverse and sometimes incommensurable yet legitimate plural ontologies. Tribal Nations, Indigenous communities, and other non-Western worldviews are not simply imagined; they offer different teachings regarding the relational and embedded realities governing relations among human and more-than-human beings across time and space. The field of STS has a rich history of exploring ontological controversies and provides insight into understanding diverse and competing perspectives in science and technology, yet without articulating the connection between this conceptual terrain and the lived realities of socio-technological system entrenchment or change. ERSS recognizes participation, energy system democratization, and even co-production as components of a just energy transition, while most typically thinkingmore »about participation as a methodology or research approach rather than as requiring consideration and even wholesale reconceptualization of ontological foundations. To advance convergent, transdisciplinary social science research in socio technological transitions requires grappling with plural ontologies regarding the reality of relations in the world. Here, we explore diverse ontologies shaping the realities of energy systems through the lens of Tribal Nations in the Great Lakes region in the United States. Ontologies that recognize reciprocal relationships among human and more-than-human beings as well as the sovereignty of these beings and their collective kinships suggest fundamentally different priorities for energy systems transitions. Moving beyond the language of imagination to recognize that cultures can involve diverse and sometimes incommensurable pluralistic ontologies is essential for developing inclusive and just frameworks for socio-technological system transitions.« less
  7. Solar photovoltaic (PV) energy technology can play a key role in decreasing the amount of carbon emissions associated with electrical energy production, while also providing an economically justifiable alternative to fossil fuel production. Solar energy technology is also extremely flexible in terms of the size and siting of technological development. Large scale PV farms, however, require access to large tracts of land, which can create community-scale conflict over siting solar energy development projects. While previous scholarship offers frameworks for understanding the mechanisms at play in socio-technological system transitions, including the renewable energy transition, those frameworks fail to center community priorities, values, and concerns, and therefore often do not provide an effective means of addressing community conflict over solar siting. This paper provides a conceptual exploration of how a proposed framework can guide decision making for solar development across multiple scales and settings, while also illuminating the potential barriers and bottlenecks that may limit the potential of solar energy development to occur in scales and forms that receive community acceptance and at the pace necessary to address the greenhouse gas emissions currently contributing to the rapidly changing global climate.